BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35522224)

  • 1. Electrochemical Oxidation of HMF via Hydrogen Atom Transfer and Hydride Transfer on NiOOH and the Impact of NiOOH Composition.
    Bender MT; Choi KS
    ChemSusChem; 2022 Jul; 15(13):e202200675. PubMed ID: 35522224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Catalytic Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ruthenium Cluster-Embedded Ni(OH)
    Chai X; Jiang K; Wang J; Ren Z; Liu X; Chen L; Zhuang X; Wang T
    ChemSusChem; 2022 Aug; 15(16):e202200863. PubMed ID: 35716074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alloy-Driven Efficient Electrocatalytic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural towards 2,5-Furandicarboxylic Acid: A Review.
    Guo M; Lu X; Xiong J; Zhang R; Li X; Qiao Y; Ji N; Yu Z
    ChemSusChem; 2022 Sep; 15(17):e202201074. PubMed ID: 35790081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid.
    Yi G; Teong SP; Li X; Zhang Y
    ChemSusChem; 2014 Aug; 7(8):2131-5. PubMed ID: 24889713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural.
    Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B
    ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid.
    Villa A; Schiavoni M; Campisi S; Veith GM; Prati L
    ChemSusChem; 2013 Apr; 6(4):609-12. PubMed ID: 23495091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by an evolved aryl-alcohol oxidase.
    Viña-Gonzalez J; Martinez AT; Guallar V; Alcalde M
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140293. PubMed ID: 31676448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.
    Zhang J; Li J; Tang Y; Lin L; Long M
    Carbohydr Polym; 2015 Oct; 130():420-8. PubMed ID: 26076643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid.
    Dijkman WP; Groothuis DE; Fraaije MW
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6515-8. PubMed ID: 24802551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges of Green Production of 2,5-Furandicarboxylic Acid from Bio-Derived 5-Hydroxymethylfurfural: Overcoming Deactivation by Concomitant Amino Acids.
    Neukum D; Baumgarten L; Wüst D; Sarma BB; Saraçi E; Kruse A; Grunwaldt JD
    ChemSusChem; 2022 Jul; 15(13):e202200418. PubMed ID: 35439346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Dehydrogenation Pathways of Amines to Nitriles on NiOOH.
    Bender MT; Choi KS
    JACS Au; 2022 May; 2(5):1169-1180. PubMed ID: 35647590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel 2,5-Furandicarboxylic Acid Biosynthesis Route from Biomass-Derived 5-Hydroxymethylfurfural Based on the Consecutive Enzyme Reactions.
    Wu S; Liu Q; Tan H; Zhang F; Yin H
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1470-1482. PubMed ID: 32125648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing operational parameters for the enzymatic production of furandicarboxylic acid building block.
    Sánchez-Ruiz MI; Martínez AT; Serrano A
    Microb Cell Fact; 2021 Sep; 20(1):180. PubMed ID: 34503517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro- and Photocatalytic Oxidative Upgrading of Bio-based 5-Hydroxymethylfurfural.
    Meng Y; Yang S; Li H
    ChemSusChem; 2022 Jul; 15(13):e202102581. PubMed ID: 35050546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid.
    Totaro G; Sisti L; Marchese P; Colonna M; Romano A; Gioia C; Vannini M; Celli A
    ChemSusChem; 2022 Jul; 15(13):e202200501. PubMed ID: 35438242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14.
    Sheng Y; Tan X; Zhou X; Xu Y
    Appl Biochem Biotechnol; 2020 Oct; 192(2):455-465. PubMed ID: 32394319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective aerobic oxidation of 5-HMF into 2,5-furandicarboxylic acid with Pt catalysts supported on TiO2 - and ZrO2 -based supports.
    Ait Rass H; Essayem N; Besson M
    ChemSusChem; 2015 Apr; 8(7):1206-17. PubMed ID: 25736596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural.
    Hossain GS; Yuan H; Li J; Shin HD; Wang M; Du G; Chen J; Liu L
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strengthening the Stability of the Reconstructed NiOOH Phase for 5-Hydroxymethylfurfural Oxidation.
    Huang Y; Pang X; Cui J; Huang Z; Wang G; Zhao H; Bai H; Fan W
    Inorg Chem; 2023 Apr; 62(16):6499-6509. PubMed ID: 37036090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Faces-Tailored Oxygen Vacancy in Au/CeO
    Wei Y; Zhang Y; Chen Y; Wang F; Cao Y; Guan W; Li X
    ChemSusChem; 2022 Jul; 15(13):e202101983. PubMed ID: 34644006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.