These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35522481)

  • 1. Universality of Hofstadter Butterflies on Hyperbolic Lattices.
    Stegmaier A; Upreti LK; Thomale R; Boettcher I
    Phys Rev Lett; 2022 Apr; 128(16):166402. PubMed ID: 35522481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical properties of the Ising model in hyperbolic space.
    Breuckmann NP; Placke B; Roy A
    Phys Rev E; 2020 Feb; 101(2-1):022124. PubMed ID: 32168633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Abelian generalizations of the Hofstadter model: spin-orbit-coupled butterfly pairs.
    Yang Y; Zhen B; Joannopoulos JD; Soljačić M
    Light Sci Appl; 2020; 9():177. PubMed ID: 33088494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band Theory and Boundary Modes of High-Dimensional Representations of Infinite Hyperbolic Lattices.
    Cheng N; Serafin F; McInerney J; Rocklin Z; Sun K; Mao X
    Phys Rev Lett; 2022 Aug; 129(8):088002. PubMed ID: 36053689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Majority-vote model on hyperbolic lattices.
    Wu ZX; Holme P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011133. PubMed ID: 20365349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bosonic Hofstadter butterflies in synthetic antiferromagnetic patterns.
    Krivosenko YS; Iorsh IV; Shelykh IA
    J Phys Condens Matter; 2021 Jan; 33(13):. PubMed ID: 33412524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tight-binding electrons on triangular and kagomé lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies.
    Li J; Wang YF; Gong CD
    J Phys Condens Matter; 2011 Apr; 23(15):156002. PubMed ID: 21460430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices.
    Lee Y; Verstraete F; Gendiar A
    Phys Rev E; 2016 Aug; 94(2-1):022133. PubMed ID: 27627272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbolic Topological Band Insulators.
    Urwyler DM; Lenggenhager PM; Boettcher I; Thomale R; Neupert T; Bzdušek T
    Phys Rev Lett; 2022 Dec; 129(24):246402. PubMed ID: 36563257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of novel topological states in hyperbolic lattices.
    Zhang W; Yuan H; Sun N; Sun H; Zhang X
    Nat Commun; 2022 May; 13(1):2937. PubMed ID: 35618723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasiperiodic granular chains and Hofstadter butterflies.
    Martínez AJ; Porter MA; Kevrekidis PG
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automorphic Bloch theorems for hyperbolic lattices.
    Maciejko J; Rayan S
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35217612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circuit Quantum Electrodynamics in Hyperbolic Space: From Photon Bound States to Frustrated Spin Models.
    Bienias P; Boettcher I; Belyansky R; Kollár AJ; Gorshkov AV
    Phys Rev Lett; 2022 Jan; 128(1):013601. PubMed ID: 35061450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological Hyperbolic Lattices.
    Yu S; Piao X; Park N
    Phys Rev Lett; 2020 Jul; 125(5):053901. PubMed ID: 32794858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry.
    Boettcher I; Bienias P; Belyansky R; Kollár AJ; Gorshkov AV
    Phys Rev A (Coll Park); 2020 Sep; 102(3):. PubMed ID: 34136733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices.
    Dean CR; Wang L; Maher P; Forsythe C; Ghahari F; Gao Y; Katoch J; Ishigami M; Moon P; Koshino M; Taniguchi T; Watanabe K; Shepard KL; Hone J; Kim P
    Nature; 2013 May; 497(7451):598-602. PubMed ID: 23676673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percolation on hyperbolic lattices.
    Baek SK; Minnhagen P; Kim BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011124. PubMed ID: 19257018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperbolic matter in electrical circuits with tunable complex phases.
    Chen A; Brand H; Helbig T; Hofmann T; Imhof S; Fritzsche A; Kießling T; Stegmaier A; Upreti LK; Neupert T; Bzdušek T; Greiter M; Thomale R; Boettcher I
    Nat Commun; 2023 Feb; 14(1):622. PubMed ID: 36739281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating hyperbolic space on a circuit board.
    Lenggenhager PM; Stegmaier A; Upreti LK; Hofmann T; Helbig T; Vollhardt A; Greiter M; Lee CH; Imhof S; Brand H; Kießling T; Boettcher I; Neupert T; Thomale R; Bzdušek T
    Nat Commun; 2022 Jul; 13(1):4373. PubMed ID: 35902574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-order fractal states in graphene superlattices.
    Krishna Kumar R; Mishchenko A; Chen X; Pezzini S; Auton GH; Ponomarenko LA; Zeitler U; Eaves L; Fal'ko VI; Geim AK
    Proc Natl Acad Sci U S A; 2018 May; 115(20):5135-5139. PubMed ID: 29712870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.