These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 35522485)
21. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings. Zheng S; Wang J Sci Rep; 2017 Jan; 7():40781. PubMed ID: 28094325 [TBL] [Abstract][Full Text] [Related]
22. On-column 2p bound state with topological charge ±1 excited by an atomic-size vortex beam in an aberration-corrected scanning transmission electron microscope. Xin HL; Zheng H Microsc Microanal; 2012 Aug; 18(4):711-9. PubMed ID: 22832117 [TBL] [Abstract][Full Text] [Related]
24. Normal modes and mode transformation of pure electron vortex beams. Thirunavukkarasu G; Mousley M; Babiker M; Yuan J Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069769 [TBL] [Abstract][Full Text] [Related]
25. Controlled generation of array beams of higher order orbital angular momentum and study of their frequency-doubling characteristics. Harshith BS; Samanta GK Sci Rep; 2019 Jul; 9(1):10916. PubMed ID: 31358804 [TBL] [Abstract][Full Text] [Related]
26. Sculpturing the electron wave function using nanoscale phase masks. Shiloh R; Lereah Y; Lilach Y; Arie A Ultramicroscopy; 2014 Sep; 144():26-31. PubMed ID: 24815028 [TBL] [Abstract][Full Text] [Related]
31. Vortex beams of atoms and molecules. Luski A; Segev Y; David R; Bitton O; Nadler H; Barnea AR; Gorlach A; Cheshnovsky O; Kaminer I; Narevicius E Science; 2021 Sep; 373(6559):1105-1109. PubMed ID: 34516841 [TBL] [Abstract][Full Text] [Related]
32. Nuclear excitation by electron capture in optical-laser-generated plasmas. Gunst J; Wu Y; Keitel CH; Pálffy A Phys Rev E; 2018 Jun; 97(6-1):063205. PubMed ID: 30011546 [TBL] [Abstract][Full Text] [Related]
33. Resonant X-ray excitation of the nuclear clock isomer Shvyd'ko Y; Röhlsberger R; Kocharovskaya O; Evers J; Geloni GA; Liu P; Shu D; Miceli A; Stone B; Hippler W; Marx-Glowna B; Uschmann I; Loetzsch R; Leupold O; Wille HC; Sergeev I; Gerharz M; Zhang X; Grech C; Guetg M; Kocharyan V; Kujala N; Liu S; Qin W; Zozulya A; Hallmann J; Boesenberg U; Jo W; Möller J; Rodriguez-Fernandez A; Youssef M; Madsen A; Kolodziej T Nature; 2023 Oct; 622(7983):471-475. PubMed ID: 37758953 [TBL] [Abstract][Full Text] [Related]
34. Excitation of ^{229m}Th at Inelastic Scattering of Low Energy Electrons. Tkalya EV Phys Rev Lett; 2020 Jun; 124(24):242501. PubMed ID: 32639815 [TBL] [Abstract][Full Text] [Related]
35. Electron vortex beams prepared by a spiral aperture with the goal to measure EMCD on ferromagnetic films via STEM. Pohl D; Schneider S; Rusz J; Rellinghaus B Ultramicroscopy; 2015 Mar; 150():16-22. PubMed ID: 25497492 [TBL] [Abstract][Full Text] [Related]
36. Angular dynamics of small nanoparticles induced by non-vortex electron beams. Castellanos-Reyes JÁ; Castrejón-Figueroa J; Reyes-Coronado A Ultramicroscopy; 2021 Jun; 225():113274. PubMed ID: 33901838 [TBL] [Abstract][Full Text] [Related]
37. Auto-transition of vortex- to vector-Airy beams via liquid crystal q-Airy-plates. Wei B; Qi S; Liu S; Li P; Zhang Y; Han L; Zhong J; Hu W; Lu Y; Zhao J Opt Express; 2019 Jun; 27(13):18848-18857. PubMed ID: 31252820 [TBL] [Abstract][Full Text] [Related]
38. Exploiting lens aberrations to create electron-vortex beams. Clark L; Béché A; Guzzinati G; Lubk A; Mazilu M; Van Boxem R; Verbeeck J Phys Rev Lett; 2013 Aug; 111(6):064801. PubMed ID: 23971578 [TBL] [Abstract][Full Text] [Related]
39. Probing the localization of magnetic dichroism by atomic-size astigmatic and vortex electron beams. Negi DS; Idrobo JC; Rusz J Sci Rep; 2018 Mar; 8(1):4019. PubMed ID: 29507317 [TBL] [Abstract][Full Text] [Related]
40. Propagation properties and radiation forces of the Airy Gaussian vortex beams in a harmonic potential. Pang Z; Deng D Opt Express; 2017 Jun; 25(12):13635-13647. PubMed ID: 28788906 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]