BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35522609)

  • 1. Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material.
    Xu Z; Wei DW; Bao RY; Wang Y; Ke K; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2022 May; 14(19):22521-22530. PubMed ID: 35522609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Configurational Entropy Regulation in Polyolefin Elastomer/Paraffin Wax Vitrimers by Thermally Responsive Liquid-Solid Transition for Force Storage.
    Xu Z; Liu YB; Wei DW; Bao RY; Wang Y; Ke K; Yang W
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12423-12433. PubMed ID: 36821339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions.
    Sun WJ; Guan Y; Wang YY; Wang T; Xu YT; Kong WW; Jia LC; Yan DX; Li ZM
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43449-43457. PubMed ID: 34472846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Sensing Variable Stiffness Actuation of Shape Memory Coil by an Inferential Soft Sensor.
    Sul BB; Kaliaperumal D; Choi SB
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Phase-Change Material-Elastomer Composite and Integration in Kirigami-Inspired Voxel-Based Actuators.
    Decroly G; Raffoul R; Deslypere C; Leroy P; Van Hove L; Delchambre A; Lambert P
    Front Robot AI; 2021; 8():672934. PubMed ID: 34041277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Layer Jamming Actuator for Tunable Stiffness and Shape-Changing Devices.
    Ibrahimi M; PaternĂ² L; Ricotti L; Menciassi A
    Soft Robot; 2021 Feb; 8(1):85-96. PubMed ID: 32456553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators.
    Shintake J; Rosset S; Schubert B; Floreano D; Shea H
    Adv Mater; 2016 Jan; 28(2):231-8. PubMed ID: 26551665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soft Actuators with Stiffness and Shape Modulation Using 3D-Printed Conductive Polylactic Acid Material.
    Al-Rubaiai M; Pinto T; Qian C; Tan X
    Soft Robot; 2019 Jun; 6(3):318-332. PubMed ID: 30855215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stiffness Variable Polymer for Soft Actuators with Sharp Stiffness Switch and Fast Response.
    Liu Y; Wang Y; Yang X; Huang W; Zhang Y; Zhang X; Wang X
    ACS Appl Mater Interfaces; 2023 May; 15(21):26016-26027. PubMed ID: 37201204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroactive Polymer-Based Soft Actuator with Integrated Functions of Multi-Degree-of-Freedom Motion and Perception.
    Wang R; Zhang C; Tan W; Yang J; Lin D; Liu L
    Soft Robot; 2023 Feb; 10(1):119-128. PubMed ID: 35482290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical network relaxation of a dynamic cross-linked polyolefin elastomer for advanced reversible shape memory effect.
    Xu Z; Meng S; Wei DW; Bao RY; Wang Y; Ke K; Yang W
    Nanoscale; 2023 Mar; 15(11):5458-5468. PubMed ID: 36852586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning-based self-sensing of the stiffness of shape memory coil actuator.
    Sul BB; Dhanalakshami K
    Soft comput; 2022; 26(8):3743-3755. PubMed ID: 35281621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic-field induced shape memory hydrogels for deformable actuators.
    Tian Y; Xu Z; Qi H; Lu X; Jiang T; Wang L; Zhang G; Xiao R; Wu H
    Soft Matter; 2024 May; ():. PubMed ID: 38712600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro and Light-Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks.
    Xu Z; Ding C; Wei DW; Bao RY; Ke K; Liu Z; Yang MB; Yang W
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30332-30340. PubMed ID: 31355626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable Stiffness Fibers Enabled Universal and Programmable Re-Foldability Strategy for Modular Soft Robotics.
    Luan H; Wang M; Zhang Q; You Z; Jiao Z
    Adv Sci (Weinh); 2024 Mar; 11(10):e2307350. PubMed ID: 38155496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Perceptional Soft Robotics by a Dielectric Elastomer.
    Pan X; Pu W; Liu Y; Xiao Y; Pu J; Shi Y; Wu H; Wang H
    ACS Appl Mater Interfaces; 2024 May; 16(20):26797-26807. PubMed ID: 38722638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless Miniature Magnetic Phase-Change Soft Actuators.
    Tang Y; Li M; Wang T; Dong X; Hu W; Sitti M
    Adv Mater; 2022 Oct; 34(40):e2204185. PubMed ID: 35975467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications.
    Tian J; Wang C; Wang K; Xue R; Liu X; Yang Q
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A retrofit sensing strategy for soft fluidic robots.
    Zou S; Picella S; de Vries J; Kortman VG; Sakes A; Overvelde JTB
    Nat Commun; 2024 Jan; 15(1):539. PubMed ID: 38225274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knitting from Nature: Self-Sensing Soft Robotics Enabled by All-in-One Knit Architectures.
    Yang M; Sun F; Hu X; Sun F
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44294-44304. PubMed ID: 37695689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.