These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35522832)

  • 1. Non-negative matrix factorization improves the efficiency of recording frequency-following responses in normal-hearing adults and neonates.
    Jeng FC; Lin TH; Hart BN; Montgomery-Reagan K; McDonald K
    Int J Audiol; 2023 Jul; 62(7):688-698. PubMed ID: 35522832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exponential Modeling of Frequency-Following Responses in American Neonates and Adults.
    Jeng FC; Nance B; Montgomery-Reagan K; Lin CD
    J Am Acad Audiol; 2018 Feb; 29(2):125-134. PubMed ID: 29401060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brainstem correlates of cochlear nonlinearity measured via the scalp-recorded frequency-following response.
    Bidelman GM; Bhagat S
    Neuroreport; 2020 Jul; 31(10):702-707. PubMed ID: 32453027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exponential modeling of human frequency-following responses to voice pitch.
    Jeng FC; Chung HK; Lin CD; Dickman B; Hu J
    Int J Audiol; 2011 Sep; 50(9):582-93. PubMed ID: 21722020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalp-recorded frequency-following responses in neonates.
    Gardi J; Salamy A; Mendelson T
    Audiology; 1979; 18(6):494-506. PubMed ID: 526194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human frequency-following responses: representation of steady-state synthetic vowels.
    Krishnan A
    Hear Res; 2002 Apr; 166(1-2):192-201. PubMed ID: 12062771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults.
    Jeng FC; Hu J; Dickman B; Montgomery-Reagan K; Tong M; Wu G; Lin CD
    Ear Hear; 2011; 32(6):699-707. PubMed ID: 21543983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging degrades the neural encoding of simple and complex sounds in the human brainstem.
    Clinard CG; Tremblay KL
    J Am Acad Audiol; 2013; 24(7):590-9; quiz 643-4. PubMed ID: 24047946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benefits of Nonlinear Frequency Compression in Adult Hearing Aid Users.
    Kokx-Ryan M; Cohen J; Cord MT; Walden TC; Makashay MJ; Sheffield BM; Brungart DS
    J Am Acad Audiol; 2015; 26(10):838-55. PubMed ID: 26554489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Objective information-theoretic algorithm for detecting brainstem-evoked responses to complex stimuli.
    Bidelman GM
    J Am Acad Audiol; 2014 Sep; 25(8):715-26. PubMed ID: 25380118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The possible role of early-stage phase-locked neural activities in speech-in-noise perception in human adults across age and hearing loss.
    Mai G; Howell P
    Hear Res; 2023 Jan; 427():108647. PubMed ID: 36436293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intelligible speech encoded in the human brain stem frequency-following response.
    Galbraith GC; Arbagey PW; Branski R; Comerci N; Rector PM
    Neuroreport; 1995 Nov; 6(17):2363-7. PubMed ID: 8747154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits.
    Bidelman G; Powers L
    Int J Audiol; 2018 Sep; 57(9):665-672. PubMed ID: 29764252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcortical rather than cortical sources of the frequency-following response (FFR) relate to speech-in-noise perception in normal-hearing listeners.
    Bidelman GM; Momtaz S
    Neurosci Lett; 2021 Feb; 746():135664. PubMed ID: 33497718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing native language neural commitment at the brainstem level: A cross-linguistic investigation of the association between frequency-following response and speech perception.
    Yu L; Zhang Y
    Neuropsychologia; 2018 Jan; 109():140-148. PubMed ID: 29246484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human frequency-following response: representation of tonal sweeps.
    Krishnan A; Parkinson J
    Audiol Neurootol; 2000; 5(6):312-21. PubMed ID: 11025331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards Objective Measures of Functional Hearing Abilities.
    Innes-Brown H; Tsongas R; Marozeau J; McKay C
    Adv Exp Med Biol; 2016; 894():315-325. PubMed ID: 27080672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two algorithms for detecting human frequency-following responses to voice pitch.
    Jeng FC; Hu J; Dickman B; Lin CY; Lin CD; Wang CY; Chung HK; Li X
    Int J Audiol; 2011 Jan; 50(1):14-26. PubMed ID: 21047294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recording the human brainstem frequency-following-response in the free-field.
    Gama N; Peretz I; Lehmann A
    J Neurosci Methods; 2017 Mar; 280():47-53. PubMed ID: 28185890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.