These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35522901)
21. A LoC-SERS platform based on triple signal amplification for highly sensitive detection of colorectal cancer miRNAs. Dai C; Wang K; Tan M; Hua Z; Xia L; Qin L Anal Methods; 2023 Aug; 15(33):4194-4203. PubMed ID: 37584160 [TBL] [Abstract][Full Text] [Related]
22. Quantitative and Noninvasive Detection of SAH-Related MiRNA in Cerebrospinal Fluids In Vivo Using SERS Sensors Based on Acupuncture-Based Technology. Sun J; Song Y; Wang M; Zhao P; Gao F; Li J; Yang M; Yuan H; Sun B; Wang Y ACS Appl Mater Interfaces; 2022 Aug; 14(32):37088-37100. PubMed ID: 35938390 [TBL] [Abstract][Full Text] [Related]
23. Triggerable Mutually Amplified Signal Probe Based SERS-Microfluidics Platform for the Efficient Enrichment and Quantitative Detection of miRNA. Wang Z; Ye S; Zhang N; Liu X; Wang M Anal Chem; 2019 Apr; 91(8):5043-5050. PubMed ID: 30900865 [TBL] [Abstract][Full Text] [Related]
24. Target-Induced Core-Satellite Nanostructure Assembly Strategy for Dual-Signal-On Fluorescence Imaging and Raman Quantification of Intracellular MicroRNA Guided Photothermal Therapy. Li N; Shen F; Cai Z; Pan W; Yin Y; Deng X; Zhang X; Machuki JO; Yu Y; Yang D; Yang Y; Guan M; Gao F Small; 2020 Dec; 16(49):e2005511. PubMed ID: 33179397 [TBL] [Abstract][Full Text] [Related]
25. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928 [TBL] [Abstract][Full Text] [Related]
26. Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS. Salmon AR; Esteban R; Taylor RW; Hugall JT; Smith CA; Whyte G; Scherman OA; Aizpurua J; Abell C; Baumberg JJ Small; 2016 Apr; 12(13):1788-96. PubMed ID: 26865562 [TBL] [Abstract][Full Text] [Related]
27. DNA strand displacement based surface-enhanced Raman scattering-fluorescence dual-mode nanoprobes for quantification and imaging of vascular endothelial growth factor in living cells. Huang L; Zhang Z; Li G Biosens Bioelectron; 2022 May; 204():114069. PubMed ID: 35182835 [TBL] [Abstract][Full Text] [Related]
28. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. Lin HY; Huang CH; Hsieh WH; Liu LH; Lin YC; Chu CC; Wang ST; Kuo IT; Chau LK; Yang CY Small; 2014 Nov; 10(22):4700-10. PubMed ID: 25115777 [TBL] [Abstract][Full Text] [Related]
29. Microfluidics-aided fabrication of 3D micro-nano hierarchical SERS substrate for rapid detection of dual hepatocellular carcinoma biomarkers. Zhan C; Guan Z; Yu L; Jing T; Jia H; Chen X; Gao R Lab Chip; 2024 Jan; 24(3):528-536. PubMed ID: 38168831 [TBL] [Abstract][Full Text] [Related]
30. Three-dimensional hierarchical plasmonic nano-architecture based label-free surface-enhanced Raman spectroscopy detection of urinary exosomal miRNA for clinical diagnosis of prostate cancer. Kim WH; Lee JU; Jeon MJ; Park KH; Sim SJ Biosens Bioelectron; 2022 Jun; 205():114116. PubMed ID: 35235898 [TBL] [Abstract][Full Text] [Related]
31. Target-triggered configuration change of DNA tetrahedron for SERS assay of microRNA 122. Wang S; Wu C; Luo J; Luo X; Yuan R; Yang X Mikrochim Acta; 2020 Jul; 187(8):460. PubMed ID: 32686039 [TBL] [Abstract][Full Text] [Related]
32. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Wu Y; Li Y; Han H; Zhao C; Zhang X Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618 [TBL] [Abstract][Full Text] [Related]
33. Glass Nanopipette-Based Plasmonic SERS Platform for Single-Cell MicroRNA-21 Sensing during Apoptosis. Wang Y; Wang D; Qi G; Hu P; Wang E; Jin Y Anal Chem; 2023 Nov; 95(44):16234-16242. PubMed ID: 37889218 [TBL] [Abstract][Full Text] [Related]
34. Many Birds, One Stone: A Smart Nanodevice for Ratiometric Dual-Spectrum Assay of Intracellular MicroRNA and Multimodal Synergetic Cancer Therapy. He P; Han W; Bi C; Song W; Niu S; Zhou H; Zhang X ACS Nano; 2021 Apr; 15(4):6961-6976. PubMed ID: 33820415 [TBL] [Abstract][Full Text] [Related]
35. SERS-Microfluidic Approach for the Quantitative Detection of miRNA Using DNAzyme-Mediated Reciprocal Signal Amplification. Ma L; Ye S; Wang X; Zhang J ACS Sens; 2021 Mar; 6(3):1392-1399. PubMed ID: 33591724 [TBL] [Abstract][Full Text] [Related]
36. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls. Lee T; Wi JS; Oh A; Na HK; Lee J; Lee K; Lee TG; Haam S Nanoscale; 2018 Feb; 10(8):3680-3687. PubMed ID: 29323386 [TBL] [Abstract][Full Text] [Related]
37. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464 [TBL] [Abstract][Full Text] [Related]
38. Spectroelectrochemical detection of microRNA-155 based on functional RNA immobilization onto ITO/GNP nanopattern. Mohammadniaei M; Yoon J; Lee T; Choi JW J Biotechnol; 2018 May; 274():40-46. PubMed ID: 29588181 [TBL] [Abstract][Full Text] [Related]
39. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099 [TBL] [Abstract][Full Text] [Related]
40. Gold nanocage-based surface-enhanced Raman scattering probes for long-term monitoring of intracellular microRNA during bone marrow stem cell differentiation. Cao X; Wang Z; Bi L; Bi C; Du Q Nanoscale; 2020 Jan; 12(3):1513-1527. PubMed ID: 31854413 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]