BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35522998)

  • 1. A Method to Estimate the Distribution of Proteins across Multiple Compartments Using Data from Quantitative Proteomics Subcellular Fractionation Experiments.
    Moore DF; Sleat DE; Lobel P
    J Proteome Res; 2022 Jun; 21(6):1371-1381. PubMed ID: 35522998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomics methods for subcellular proteome analysis.
    Drissi R; Dubois ML; Boisvert FM
    FEBS J; 2013 Nov; 280(22):5626-34. PubMed ID: 24034475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.
    Jadot M; Boonen M; Thirion J; Wang N; Xing J; Zhao C; Tannous A; Qian M; Zheng H; Everett JK; Moore DF; Sleat DE; Lobel P
    Mol Cell Proteomics; 2017 Feb; 16(2):194-212. PubMed ID: 27923875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Organellar Maps for Spatial Proteomics.
    Itzhak DN; Schessner JP; Borner GHH
    Curr Protoc Cell Biol; 2019 Jun; 83(1):e81. PubMed ID: 30489039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular fractionation for identification of biomarkers: serial detergent extraction by subcellular accessibility and solubility.
    Hwang SI; Han DK
    Methods Mol Biol; 2013; 1002():25-35. PubMed ID: 23625392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Analysis of Quantitative Mass Spectrometric Methods for Subcellular Proteomics.
    Tannous A; Boonen M; Zheng H; Zhao C; Germain CJ; Moore DF; Sleat DE; Jadot M; Lobel P
    J Proteome Res; 2020 Apr; 19(4):1718-1730. PubMed ID: 32134668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome analysis at the level of subcellular structures.
    Dreger M
    Eur J Biochem; 2003 Feb; 270(4):589-99. PubMed ID: 12581199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes.
    Qattan AT; Mulvey C; Crawford M; Natale DA; Godovac-Zimmermann J
    J Proteome Res; 2010 Jan; 9(1):495-508. PubMed ID: 19911851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches to Characterize Organelle, Compartment, or Structure Purity.
    Mueller SJ; Hoernstein SN; Reski R
    Methods Mol Biol; 2017; 1511():13-28. PubMed ID: 27730599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A draft map of the mouse pluripotent stem cell spatial proteome.
    Christoforou A; Mulvey CM; Breckels LM; Geladaki A; Hurrell T; Hayward PC; Naake T; Gatto L; Viner R; Martinez Arias A; Lilley KS
    Nat Commun; 2016 Jan; 7():8992. PubMed ID: 26754106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of subcellular location by comparative proteomic analysis of native and density-shifted lysosomes.
    Della Valle MC; Sleat DE; Zheng H; Moore DF; Jadot M; Lobel P
    Mol Cell Proteomics; 2011 Apr; 10(4):M110.006403. PubMed ID: 21252268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frozen tissue can provide reproducible proteomic results of subcellular fractionation.
    Lim J; Menon V; Bitzer M; Miller LM; Madrid-Aliste C; Weiss LM; Fiser A; Angeletti RH
    Anal Biochem; 2011 Nov; 418(1):78-84. PubMed ID: 21802400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.
    Rey S; Gardy JL; Brinkman FS
    BMC Genomics; 2005 Nov; 6():162. PubMed ID: 16288665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary methods to assist subcellular fractionation in organellar proteomics.
    Gauthier DJ; Lazure C
    Expert Rev Proteomics; 2008 Aug; 5(4):603-17. PubMed ID: 18761470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using hyperLOPIT to perform high-resolution mapping of the spatial proteome.
    Mulvey CM; Breckels LM; Geladaki A; Britovšek NK; Nightingale DJH; Christoforou A; Elzek M; Deery MJ; Gatto L; Lilley KS
    Nat Protoc; 2017 Jun; 12(6):1110-1135. PubMed ID: 28471460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms in clathrin-mediated membrane budding revealed through subcellular proteomics.
    Ritter B; Blondeau F; Denisov AY; Gehring K; McPherson PS
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):769-73. PubMed ID: 15494011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal enhanced proteomics: a biological perspective on dissecting the functional organisation of cell proteomes.
    Bensaddek D; Nicolas A; Lamond AI
    Curr Opin Chem Biol; 2019 Feb; 48():114-122. PubMed ID: 30551035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SubCellBarCode: integrated workflow for robust spatial proteomics by mass spectrometry.
    Arslan T; Pan Y; Mermelekas G; Vesterlund M; Orre LM; Lehtiö J
    Nat Protoc; 2022 Aug; 17(8):1832-1867. PubMed ID: 35732783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organelle proteomics: implications for subcellular fractionation in proteomics.
    Huber LA; Pfaller K; Vietor I
    Circ Res; 2003 May; 92(9):962-8. PubMed ID: 12750306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.