BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35522998)

  • 21. Spatial perspectives in the redox code-Mass spectrometric proteomics studies of moonlighting proteins.
    Pinto G; Radulovic M; Godovac-Zimmermann J
    Mass Spectrom Rev; 2018 Jan; 37(1):81-100. PubMed ID: 27186965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SubCellBarCode: Proteome-wide Mapping of Protein Localization and Relocalization.
    Orre LM; Vesterlund M; Pan Y; Arslan T; Zhu Y; Fernandez Woodbridge A; Frings O; Fredlund E; Lehtiö J
    Mol Cell; 2019 Jan; 73(1):166-182.e7. PubMed ID: 30609389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative Proteomic Analysis of the Human Nucleolus.
    Bensaddek D; Nicolas A; Lamond AI
    Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics.
    Cox B; Emili A
    Nat Protoc; 2006; 1(4):1872-8. PubMed ID: 17487171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism.
    Stekhoven DJ; Omasits U; Quebatte M; Dehio C; Ahrens CH
    J Proteomics; 2014 Mar; 99():123-37. PubMed ID: 24486812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sample preparation project for the subcellular proteome of mouse liver.
    Song Y; Hao Y; Sun A; Li T; Li W; Guo L; Yan Y; Geng C; Chen N; Zhong F; Wei H; Jiang Y; He F
    Proteomics; 2006 Oct; 6(19):5269-77. PubMed ID: 16941572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organellar Maps Through Proteomic Profiling - A Conceptual Guide.
    Borner GHH
    Mol Cell Proteomics; 2020 Jul; 19(7):1076-1087. PubMed ID: 32345598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass Spectrometry-Compatible Subcellular Fractionation for Proteomics.
    Masuda T; Sugiyama N; Tomita M; Ohtsuki S; Ishihama Y
    J Proteome Res; 2020 Jan; 19(1):75-84. PubMed ID: 31599158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Complete Proteomic Workflow to Study Brain-Related Disorders via Postmortem Tissue.
    Reis-de-Oliveira G; Fioramonte M; Martins-de-Souza D
    Methods Mol Biol; 2019; 1916():319-328. PubMed ID: 30535709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
    Geladaki A; Kočevar Britovšek N; Breckels LM; Smith TS; Vennard OL; Mulvey CM; Crook OM; Gatto L; Lilley KS
    Nat Commun; 2019 Jan; 10(1):331. PubMed ID: 30659192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of proteomic marker ensembles to subcellular organelle identification.
    Andreyev AY; Shen Z; Guan Z; Ryan A; Fahy E; Subramaniam S; Raetz CR; Briggs S; Dennis EA
    Mol Cell Proteomics; 2010 Feb; 9(2):388-402. PubMed ID: 19884172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Bayesian mixture modelling approach for spatial proteomics.
    Crook OM; Mulvey CM; Kirk PDW; Lilley KS; Gatto L
    PLoS Comput Biol; 2018 Nov; 14(11):e1006516. PubMed ID: 30481170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A System-Wide Spatiotemporal Characterization of ErbB Receptor Complexes by Subcellular Fractionation Integrated Quantitative Mass Spectrometry.
    Wang S; Zhang C; Li M; Zhao C; Zheng Y
    Anal Chem; 2021 Jun; 93(22):7933-7941. PubMed ID: 34033713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of mass spectrometry in proteomics.
    Guerrera IC; Kleiner O
    Biosci Rep; 2005; 25(1-2):71-93. PubMed ID: 16222421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in
    Guo Q; Liu L; Yim WC; Cushman JC; Barkla BJ
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34065142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular fractionation of human liver reveals limits in global proteomic quantification from isolated fractions.
    Wiśniewski JR; Wegler C; Artursson P
    Anal Biochem; 2016 Sep; 509():82-88. PubMed ID: 27311553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Mass Spectrometry-Based Approach for Mapping Protein Subcellular Localization Reveals the Spatial Proteome of Mouse Primary Neurons.
    Itzhak DN; Davies C; Tyanova S; Mishra A; Williamson J; Antrobus R; Cox J; Weekes MP; Borner GHH
    Cell Rep; 2017 Sep; 20(11):2706-2718. PubMed ID: 28903049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of organelle discovery upon sub-cellular protein localisation.
    Breckels LM; Gatto L; Christoforou A; Groen AJ; Lilley KS; Trotter MW
    J Proteomics; 2013 Aug; 88():129-40. PubMed ID: 23523639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profiling Cell Lines Nuclear Sub-proteome.
    Poersch A; Maria AG; Palma CS; Grassi ML; Albuquerque D; Thomé CH; Faça VM
    Methods Mol Biol; 2017; 1550():35-46. PubMed ID: 28188521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subcellular proteomics.
    Dreger M
    Mass Spectrom Rev; 2003; 22(1):27-56. PubMed ID: 12768603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.