BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 35523130)

  • 1. The development of a deep reinforcement learning network for dose-volume-constrained treatment planning in prostate cancer intensity modulated radiotherapy.
    Sprouts D; Gao Y; Wang C; Jia X; Shen C; Chi Y
    Biomed Phys Eng Express; 2022 Jun; 8(4):. PubMed ID: 35523130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation and evaluation of an intelligent automatic treatment planning robot for prostate cancer stereotactic body radiation therapy.
    Gao Y; Shen C; Jia X; Kyun Park Y
    Radiother Oncol; 2023 Jul; 184():109685. PubMed ID: 37120103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy.
    Shen C; Chen L; Gonzalez Y; Jia X
    Med Phys; 2021 Apr; 48(4):1909-1920. PubMed ID: 33432646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operating a treatment planning system using a deep-reinforcement learning-based virtual treatment planner for prostate cancer intensity-modulated radiation therapy treatment planning.
    Shen C; Nguyen D; Chen L; Gonzalez Y; McBeth R; Qin N; Jiang SB; Jia X
    Med Phys; 2020 Jun; 47(6):2329-2336. PubMed ID: 32141086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical deep reinforcement learning framework for intelligent automatic treatment planning of prostate cancer intensity modulated radiation therapy.
    Shen C; Chen L; Jia X
    Phys Med Biol; 2021 Jun; 66(13):. PubMed ID: 34107460
    [No Abstract]   [Full Text] [Related]  

  • 6. Application programming in C# environment with recorded user software interactions and its application in autopilot of VMAT/IMRT treatment planning.
    Wang H; Xing L
    J Appl Clin Med Phys; 2016 Nov; 17(6):189-203. PubMed ID: 27929493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent inverse treatment planning via deep reinforcement learning, a proof-of-principle study in high dose-rate brachytherapy for cervical cancer.
    Shen C; Gonzalez Y; Klages P; Qin N; Jung H; Chen L; Nguyen D; Jiang SB; Jia X
    Phys Med Biol; 2019 May; 64(11):115013. PubMed ID: 30978709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-like intelligent automatic treatment planning of head and neck cancer radiation therapy.
    Gao Y; Kyun Park Y; Jia X
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38744304
    [No Abstract]   [Full Text] [Related]  

  • 9. A hybrid optimization strategy for deliverable intensity-modulated radiotherapy plan generation using deep learning-based dose prediction.
    Sun Z; Xia X; Fan J; Zhao J; Zhang K; Wang J; Hu W
    Med Phys; 2022 Mar; 49(3):1344-1356. PubMed ID: 35043971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced-order constrained optimization (ROCO): clinical application to head-and-neck IMRT.
    Rivera L; Yorke E; Kowalski A; Yang J; Radke RJ; Jackson A
    Med Phys; 2013 Feb; 40(2):021715. PubMed ID: 23387738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicriteria optimization informed VMAT planning.
    Chen H; Craft DL; Gierga DP
    Med Dosim; 2014; 39(1):64-73. PubMed ID: 24360919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning.
    Zarepisheh M; Long T; Li N; Tian Z; Romeijn HE; Jia X; Jiang SB
    Med Phys; 2014 Jun; 41(6):061711. PubMed ID: 24877806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plan template-based automation solution using a commercial treatment planning system.
    Huang X; Quan H; Zhao B; Zhou W; Chen C; Chen Y
    J Appl Clin Med Phys; 2020 May; 21(5):13-25. PubMed ID: 32180351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures.
    Mavroidis P; Ferreira BC; Shi C; Lind BK; Papanikolaou N
    Phys Med Biol; 2007 Jul; 52(13):3817-36. PubMed ID: 17664579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical VMAT machine parameter optimization for localized prostate cancer using deep reinforcement learning.
    Hrinivich WT; Bhattacharya M; Mekki L; McNutt T; Jia X; Li H; Song DY; Lee J
    Med Phys; 2024 Jun; 51(6):3972-3984. PubMed ID: 38669457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.
    Yang J; Zhang P; Zhang L; Shu H; Li B; Gui Z
    Phys Med; 2017 Jan; 33():136-145. PubMed ID: 28089602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Intensity Modulated Radiation Therapy Treatment Planning for Cervical Cancer Based on Convolution Neural Network.
    Jihong C; Penggang B; Xiuchun Z; Kaiqiang C; Wenjuan C; Yitao D; Jiewei Q; Kerun Q; Jing Z; Tianming W
    Technol Cancer Res Treat; 2020; 19():1533033820957002. PubMed ID: 33016230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse.
    Peters S; Schiefer H; Plasswilm L
    Radiat Oncol; 2014 Jul; 9():153. PubMed ID: 25011529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based automatic proton therapy planning: Impact of post-processing and dose-mimicking in plan robustness.
    Borderias-Villarroel E; Huet Dastarac M; Barragán-Montero AM; Helander R; Holmstrom M; Geets X; Sterpin E
    Med Phys; 2023 Jul; 50(7):4480-4490. PubMed ID: 37029632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated solution of deep reinforcement learning for automatic IMRT treatment planning in non-small-cell lung cancer.
    Wang H; Bai X; Wang Y; Lu Y; Wang B
    Front Oncol; 2023; 13():1124458. PubMed ID: 36816929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.