These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35523269)
1. OTUD7B (Cezanne) ameliorates fibrosis after myocardial infarction via FAK-ERK/P38 MAPK signaling pathway. Zhang J; Zha Y; Jiao Y; Li Y; Wang J; Zhang S Arch Biochem Biophys; 2022 Jul; 724():109266. PubMed ID: 35523269 [TBL] [Abstract][Full Text] [Related]
2. MicroRNA-223 Regulates Cardiac Fibrosis After Myocardial Infarction by Targeting RASA1. Liu X; Xu Y; Deng Y; Li H Cell Physiol Biochem; 2018; 46(4):1439-1454. PubMed ID: 29689569 [TBL] [Abstract][Full Text] [Related]
3. Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice. Li X; Han D; Tian Z; Gao B; Fan M; Li C; Li X; Wang Y; Ma S; Cao F Cell Physiol Biochem; 2016; 39(4):1521-36. PubMed ID: 27614871 [TBL] [Abstract][Full Text] [Related]
4. Notch3 Ameliorates Cardiac Fibrosis After Myocardial Infarction by Inhibiting the TGF-β1/Smad3 Pathway. Zhang M; Pan X; Zou Q; Xia Y; Chen J; Hao Q; Wang H; Sun D Cardiovasc Toxicol; 2016 Oct; 16(4):316-24. PubMed ID: 26487518 [TBL] [Abstract][Full Text] [Related]
5. Zerumbone, a humulane sesquiterpene from Syringa pinnatifolia, attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice. Li J; Ge F; Wuken S; Jiao S; Chen P; Huang M; Gao X; Liu J; Tu P; Chai X; Huang L Phytomedicine; 2022 Jun; 100():154078. PubMed ID: 35405613 [TBL] [Abstract][Full Text] [Related]
6. M2b Macrophages Regulate Cardiac Fibroblast Activation and Alleviate Cardiac Fibrosis After Reperfusion Injury. Yue Y; Huang S; Wang L; Wu Z; Liang M; Li H; Lv L; Li W; Wu Z Circ J; 2020 Mar; 84(4):626-635. PubMed ID: 32161201 [TBL] [Abstract][Full Text] [Related]
7. Soluble transforming growth factor-beta1 receptor II might inhibit transforming growth factor-beta-induced myofibroblast differentiation and improve ischemic cardiac function after myocardial infarction in rats. Lian R; Chen Y; Xu Z; Zhang X Coron Artery Dis; 2010 Sep; 21(6):369-77. PubMed ID: 20613497 [TBL] [Abstract][Full Text] [Related]
8. Mir-21 Promotes Cardiac Fibrosis After Myocardial Infarction Via Targeting Smad7. Yuan J; Chen H; Ge D; Xu Y; Xu H; Yang Y; Gu M; Zhou Y; Zhu J; Ge T; Chen Q; Gao Y; Wang Y; Li X; Zhao Y Cell Physiol Biochem; 2017; 42(6):2207-2219. PubMed ID: 28817807 [TBL] [Abstract][Full Text] [Related]
9. Qiliqiangxin Attenuates Cardiac Remodeling via Inhibition of TGF-β1/Smad3 and NF-κB Signaling Pathways in a Rat Model of Myocardial Infarction. Han A; Lu Y; Zheng Q; Zhang J; Zhao Y; Zhao M; Cui X Cell Physiol Biochem; 2018; 45(5):1797-1806. PubMed ID: 29510381 [TBL] [Abstract][Full Text] [Related]
10. Activation of TGF-beta1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Matsumoto-Ida M; Takimoto Y; Aoyama T; Akao M; Takeda T; Kita T Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H709-15. PubMed ID: 16183734 [TBL] [Abstract][Full Text] [Related]
11. Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis. Yang W; Zhang S; Zhu J; Jiang H; Jia D; Ou T; Qi Z; Zou Y; Qian J; Sun A; Ge J J Mol Cell Cardiol; 2019 Sep; 134():119-130. PubMed ID: 31299216 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of tartrate-resistant acid phosphatase 5 can prevent cardiac fibrosis after myocardial infarction. Yang S; Pei L; Huang Z; Zhong Y; Li J; Hong Y; Long H; Chen X; Zhou C; Zheng G; Zeng C; Wu H; Wang T Mol Med; 2024 Jun; 30(1):89. PubMed ID: 38879488 [TBL] [Abstract][Full Text] [Related]
13. CTRP3 attenuates post-infarct cardiac fibrosis by targeting Smad3 activation and inhibiting myofibroblast differentiation. Wu D; Lei H; Wang JY; Zhang CL; Feng H; Fu FY; Li L; Wu LL J Mol Med (Berl); 2015 Dec; 93(12):1311-25. PubMed ID: 26138247 [TBL] [Abstract][Full Text] [Related]
14. The association between RGS4 and choline in cardiac fibrosis. Guo J; Hang P; Yu J; Li W; Zhao X; Sun Y; Fan Z; Du Z Cell Commun Signal; 2021 Apr; 19(1):46. PubMed ID: 33892733 [TBL] [Abstract][Full Text] [Related]
15. Lnc-Ang362 is a pro-fibrotic long non-coding RNA promoting cardiac fibrosis after myocardial infarction by suppressing Smad7. Chen G; Huang S; Song F; Zhou Y; He X Arch Biochem Biophys; 2020 May; 685():108354. PubMed ID: 32240638 [TBL] [Abstract][Full Text] [Related]
16. Platelet-Derived Growth Factor and Transforming Growth Factor β1 Regulate ARDS-Associated Lung Fibrosis Through Distinct Signaling Pathways. Deng X; Jin K; Li Y; Gu W; Liu M; Zhou L Cell Physiol Biochem; 2015; 36(3):937-46. PubMed ID: 26088859 [TBL] [Abstract][Full Text] [Related]
17. Antifibrotic Actions of Peroxisome Proliferator-Activated Receptor γ Ligands in Corneal Fibroblasts Are Mediated by β-Catenin-Regulated Pathways. Jeon KI; Phipps RP; Sime PJ; Huxlin KR Am J Pathol; 2017 Aug; 187(8):1660-1669. PubMed ID: 28606794 [TBL] [Abstract][Full Text] [Related]
18. Curcumin suppresses cardiac fibroblasts activities by regulating the proliferation and cell cycle via the inhibition of the p38 MAPK/ERK signaling pathway. Fang G; Chen S; Huang Q; Chen L; Liao D Mol Med Rep; 2018 Aug; 18(2):1433-1438. PubMed ID: 29901190 [TBL] [Abstract][Full Text] [Related]
19. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways. Chen G; Xu H; Xu T; Ding W; Zhang G; Hua Y; Wu Y; Han X; Xie L; Liu B; Zhou Y Phytomedicine; 2022 Sep; 104():154277. PubMed ID: 35752078 [TBL] [Abstract][Full Text] [Related]
20. Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Li L; Fan D; Wang C; Wang JY; Cui XB; Wu D; Zhou Y; Wu LL Cardiovasc Res; 2011 Jul; 91(1):80-9. PubMed ID: 21367774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]