These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35523331)

  • 21. Increasing donor ecosystem productivity decreases terrestrial consumer reliance on a stream resource subsidy.
    Davis JM; Rosemond AD; Small GE
    Oecologia; 2011 Nov; 167(3):821-34. PubMed ID: 21647783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of aquatic insects to an environmental gradient in Amazonian streams.
    Faria APJ; Paiva CKS; Calvão LB; Cruz GM; Juen L
    Environ Monit Assess; 2021 Nov; 193(11):763. PubMed ID: 34729664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do agricultural pesticides in streams influence riparian spiders?
    Graf N; Battes KP; Cimpean M; Dittrich P; Entling MH; Link M; Scharmüller A; Schreiner VC; Szöcs E; Schäfer RB
    Sci Total Environ; 2019 Apr; 660():126-135. PubMed ID: 30639710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of Biodriven Transfer of Per- and Polyfluoroalkyl Substances from the Aquatic to the Terrestrial Environment via Emergent Insects.
    Koch A; Jonsson M; Yeung LWY; Kärrman A; Ahrens L; Ekblad A; Wang T
    Environ Sci Technol; 2021 Jun; 55(12):7900-7909. PubMed ID: 34029071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using stable isotope analysis in stream mesocosms to study potential effects of environmental chemicals on aquatic-terrestrial subsidies.
    Wieczorek MV; Kötter D; Gergs R; Schulz R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):12892-901. PubMed ID: 25586616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon and nitrogen transfer from a desert stream to riparian predators.
    Sanzone DM; Meyer JL; Marti E; Gardiner EP; Tank JL; Grimm NB
    Oecologia; 2003 Jan; 134(2):238-50. PubMed ID: 12647165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental.
    Brasil LS; Luiza-Andrade A; Calvão LB; Dias-Silva K; Faria APJ; Shimano Y; Oliveira-Junior JMB; Cardoso MN; Juen L
    Environ Monit Assess; 2020 Feb; 192(3):194. PubMed ID: 32086640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams.
    Gimenez BC; Lansac-Tôha FA; Higuti J
    Braz J Biol; 2015 Nov; 75(4 Suppl 1):S52-9. PubMed ID: 26602342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contrasting effects of aquatic subsidies on a terrestrial trophic cascade.
    Graf N; Bucher R; Schäfer RB; Entling MH
    Biol Lett; 2017 May; 13(5):. PubMed ID: 28539461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporation of zinc and copper by insects of different functional feeding groups in agricultural streams.
    Loureiro RC; Menegat MN; Restello RM; Hepp LU
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17402-17408. PubMed ID: 29654465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylmercury-total mercury ratios in predator and primary consumer insects from Adirondack streams (New York, USA).
    Riva-Murray K; Bradley PM; Brigham ME
    Ecotoxicology; 2020 Dec; 29(10):1644-1658. PubMed ID: 32180092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticles transported from aquatic to terrestrial ecosystems via emerging aquatic insects compromise subsidy quality.
    Bundschuh M; Englert D; Rosenfeldt RR; Bundschuh R; Feckler A; Lüderwald S; Seitz F; Zubrod JP; Schulz R
    Sci Rep; 2019 Oct; 9(1):15676. PubMed ID: 31666603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aquatic-Terrestrial Insecticide Fluxes: Midges as Neonicotinoid Vectors.
    Roodt AP; Schaufelberger S; Schulz R
    Environ Toxicol Chem; 2023 Jan; 42(1):60-70. PubMed ID: 36205389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of the landscape in different scales on the EPT community (Ephemeroptera, Plecoptera and Trichoptera) in an Atlantic Forest region.
    Souza FN; Mariano R; Moreira T; Campiolo S
    Environ Monit Assess; 2020 May; 192(6):391. PubMed ID: 32447587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determinants of food resource assimilation by stream insects along a tropical elevation gradient.
    Atkinson CL; Encalada AC; Rugenski AT; Thomas SA; Landeira-Dabarca A; Poff NL; Flecker AS
    Oecologia; 2018 Jul; 187(3):731-744. PubMed ID: 29700633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Percentage of Impervious Surface Soil as Indicator of Urbanization Impacts in Neotropical Aquatic Insects.
    Fogaça FN; Gomes LC; Higuti J
    Neotrop Entomol; 2013 Oct; 42(5):483-91. PubMed ID: 23949987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity of EPT (Ephemeroptera, Plecoptera, Trichoptera) Along Streams Fragmented by Waterfalls in the Brazilian Savanna.
    Andrade ICP; Krolow TK; Boldrini R; Pelicice FM
    Neotrop Entomol; 2020 Apr; 49(2):203-212. PubMed ID: 31912446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of experimental warming on two tropical Andean aquatic insects.
    Gallegos-Sánchez S; Domínguez E; Encalada AC; Ríos-Touma B
    PLoS One; 2022; 17(7):e0271256. PubMed ID: 35895667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resource subsidies between stream and terrestrial ecosystems under global change.
    Larsen S; Muehlbauer JD; Marti E
    Glob Chang Biol; 2016 Jul; 22(7):2489-504. PubMed ID: 26649817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs.
    Kraus JM; Schmidt TS; Walters DM; Wanty RB; Zuellig RE; Wolf RE
    Ecol Appl; 2014 Mar; 24(2):235-43. PubMed ID: 24689137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.