BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 35523534)

  • 41. Natural language processing of medical texts within the HELIOS environment.
    Rassinoux AM; Michel PA; Juge C; Baud R; Scherrer JR
    Comput Methods Programs Biomed; 1994 Dec; 45 Suppl():S79-96. PubMed ID: 7882677
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing the Utility of Multimodal Large Language Models (GPT-4 Vision and Large Language and Vision Assistant) in Identifying Melanoma Across Different Skin Tones.
    Cirone K; Akrout M; Abid L; Oakley A
    JMIR Dermatol; 2024 Mar; 7():e55508. PubMed ID: 38477960
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A systematic review of natural language processing for classification tasks in the field of incident reporting and adverse event analysis.
    Young IJB; Luz S; Lone N
    Int J Med Inform; 2019 Dec; 132():103971. PubMed ID: 31630063
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ChIP-GPT: a managed large language model for robust data extraction from biomedical database records.
    Cinquin O
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38314912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Essential Elements of Natural Language Processing: What the Radiologist Should Know.
    Chen PH
    Acad Radiol; 2020 Jan; 27(1):6-12. PubMed ID: 31537505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Performance analysis of large language models in the domain of legal argument mining.
    Al Zubaer A; Granitzer M; Mitrović J
    Front Artif Intell; 2023; 6():1278796. PubMed ID: 38045763
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Natural language processing to ascertain two key variables from operative reports in ophthalmology.
    Liu L; Shorstein NH; Amsden LB; Herrinton LJ
    Pharmacoepidemiol Drug Saf; 2017 Apr; 26(4):378-385. PubMed ID: 28052483
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural Language Processing for Smart Healthcare.
    Zhou B; Yang G; Shi Z; Ma S
    IEEE Rev Biomed Eng; 2024; 17():4-18. PubMed ID: 36170385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Natural language processing: an introduction.
    Nadkarni PM; Ohno-Machado L; Chapman WW
    J Am Med Inform Assoc; 2011; 18(5):544-51. PubMed ID: 21846786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural language processing in biomedicine: a unified system architecture overview.
    Doan S; Conway M; Phuong TM; Ohno-Machado L
    Methods Mol Biol; 2014; 1168():275-94. PubMed ID: 24870142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study of generative large language model for medical research and healthcare.
    Peng C; Yang X; Chen A; Smith KE; PourNejatian N; Costa AB; Martin C; Flores MG; Zhang Y; Magoc T; Lipori G; Mitchell DA; Ospina NS; Ahmed MM; Hogan WR; Shenkman EA; Guo Y; Bian J; Wu Y
    NPJ Digit Med; 2023 Nov; 6(1):210. PubMed ID: 37973919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Applications of natural language processing in radiology: A systematic review.
    Linna N; Kahn CE
    Int J Med Inform; 2022 Jul; 163():104779. PubMed ID: 35533413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pre-trained language models in medicine: A survey.
    Luo X; Deng Z; Yang B; Luo MY
    Artif Intell Med; 2024 Jun; 154():102904. PubMed ID: 38917600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Explaining neural activity in human listeners with deep learning via natural language processing of narrative text.
    Russo AG; Ciarlo A; Ponticorvo S; Di Salle F; Tedeschi G; Esposito F
    Sci Rep; 2022 Oct; 12(1):17838. PubMed ID: 36284195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Capabilities of GPT-4 in ophthalmology: an analysis of model entropy and progress towards human-level medical question answering.
    Antaki F; Milad D; Chia MA; Giguère CÉ; Touma S; El-Khoury J; Keane PA; Duval R
    Br J Ophthalmol; 2023 Nov; ():. PubMed ID: 37923374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inventory of tools for Dutch clinical language processing.
    Cornet R; Van Eldik A; De Keizer N
    Stud Health Technol Inform; 2012; 180():245-9. PubMed ID: 22874189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review.
    Kreimeyer K; Foster M; Pandey A; Arya N; Halford G; Jones SF; Forshee R; Walderhaug M; Botsis T
    J Biomed Inform; 2017 Sep; 73():14-29. PubMed ID: 28729030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New Frontiers of Natural Language Processing in Surgery.
    Morris MX; Song EY; Rajesh A; Kass N; Asaad M; Phillips BT
    Am Surg; 2023 Jan; 89(1):43-48. PubMed ID: 35969539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.