These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 35523534)

  • 61. Generative artificial intelligence performs rudimentary structural biology modeling.
    Ille AM; Markosian C; Burley SK; Mathews MB; Pasqualini R; Arap W
    bioRxiv; 2024 May; ():. PubMed ID: 38293060
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Natural language processing in radiology : Neither trivial nor impossible].
    Jungmann F; Kuhn S; Tsaur I; Kämpgen B
    Radiologe; 2019 Sep; 59(9):828-832. PubMed ID: 31168771
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Review of Natural Language Processing in Radiology.
    Luo JW; Chong JJR
    Neuroimaging Clin N Am; 2020 Nov; 30(4):447-458. PubMed ID: 33038995
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text.
    Park A; Hartzler AL; Huh J; McDonald DW; Pratt W
    J Med Internet Res; 2015 Aug; 17(8):e212. PubMed ID: 26323337
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploring the Protein Sequence Space with Global Generative Models.
    Romero-Romero S; Lindner S; Ferruz N
    Cold Spring Harb Perspect Biol; 2023 Nov; 15(11):. PubMed ID: 37848247
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study.
    Mitchell JR; Szepietowski P; Howard R; Reisman P; Jones JD; Lewis P; Fridley BL; Rollison DE
    J Med Internet Res; 2022 Mar; 24(3):e27210. PubMed ID: 35319481
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Neural correlates of word representation vectors in natural language processing models: Evidence from representational similarity analysis of event-related brain potentials.
    He T; Boudewyn MA; Kiat JE; Sagae K; Luck SJ
    Psychophysiology; 2022 Mar; 59(3):e13976. PubMed ID: 34817867
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Web 2.0-based crowdsourcing for high-quality gold standard development in clinical natural language processing.
    Zhai H; Lingren T; Deleger L; Li Q; Kaiser M; Stoutenborough L; Solti I
    J Med Internet Res; 2013 Apr; 15(4):e73. PubMed ID: 23548263
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Natural Language Processing: from Bedside to Everywhere.
    Aramaki E; Wakamiya S; Yada S; Nakamura Y
    Yearb Med Inform; 2022 Aug; 31(1):243-253. PubMed ID: 35654422
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessing the medical reasoning skills of GPT-4 in complex ophthalmology cases.
    Milad D; Antaki F; Milad J; Farah A; Khairy T; Mikhail D; Giguère CÉ; Touma S; Bernstein A; Szigiato AA; Nayman T; Mullie GA; Duval R
    Br J Ophthalmol; 2024 Feb; ():. PubMed ID: 38365427
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Natural Language Processing to Estimate Clinical Competency Committee Ratings.
    Abbott KL; George BC; Sandhu G; Harbaugh CM; Gauger PG; Ötleş E; Matusko N; Vu JV
    J Surg Educ; 2021; 78(6):2046-2051. PubMed ID: 34266789
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.
    Ormerod M; Martínez Del Rincón J; Devereux B
    JMIR Med Inform; 2021 May; 9(5):e23099. PubMed ID: 34037527
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Deep learning in clinical natural language processing: a methodical review.
    Wu S; Roberts K; Datta S; Du J; Ji Z; Si Y; Soni S; Wang Q; Wei Q; Xiang Y; Zhao B; Xu H
    J Am Med Inform Assoc; 2020 Mar; 27(3):457-470. PubMed ID: 31794016
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comprehensive Review of Natural Language Processing (NLP) in Vascular Surgery.
    Lareyre F; Nasr B; Chaudhuri A; Di Lorenzo G; Carlier M; Raffort J
    EJVES Vasc Forum; 2023; 60():57-63. PubMed ID: 37822918
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trie-based rule processing for clinical NLP: A use-case study of n-trie, making the ConText algorithm more efficient and scalable.
    Shi J; Hurdle JF
    J Biomed Inform; 2018 Sep; 85():106-113. PubMed ID: 30092358
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development and Validation of a Natural Language Processing Tool to Identify Patients Treated for Pneumonia across VA Emergency Departments.
    Jones BE; South BR; Shao Y; Lu CC; Leng J; Sauer BC; Gundlapalli AV; Samore MH; Zeng Q
    Appl Clin Inform; 2018 Jan; 9(1):122-128. PubMed ID: 29466818
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Behind the scenes: A medical natural language processing project.
    Wu JT; Dernoncourt F; Gehrmann S; Tyler PD; Moseley ET; Carlson ET; Grant DW; Li Y; Welt J; Celi LA
    Int J Med Inform; 2018 Apr; 112():68-73. PubMed ID: 29500024
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Natural language processing: state of the art, current trends and challenges.
    Khurana D; Koli A; Khatter K; Singh S
    Multimed Tools Appl; 2023; 82(3):3713-3744. PubMed ID: 35855771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.