These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35523542)

  • 1. [A spatial localization model of mobile robot based on entorhinal-hippocampal cognitive mechanism in rat brain].
    Yu N; Liao Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):217-227. PubMed ID: 35523542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [A spatial cognition model based on the selection mechanism of hippocampus place cells].
    Yu N; Liao Y; Zheng X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):27-37. PubMed ID: 32096374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic and neuronal simulation of the hippocampus and rat navigation.
    Burgess N; Donnett JG; Jeffery KJ; O'Keefe J
    Philos Trans R Soc Lond B Biol Sci; 1997 Oct; 352(1360):1535-43. PubMed ID: 9368942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving navigational uncertainty using grid cells on robots.
    Milford MJ; Wiles J; Wyeth GF
    PLoS Comput Biol; 2010 Nov; 6(11):e1000995. PubMed ID: 21085643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Model of Spatial Cell Development in Rat Hippocampus Based on Artificial Neural Network.
    Yu N; Yu H; Liao Y; Wang Z; Sie O
    J Healthc Eng; 2021; 2021():5607999. PubMed ID: 34745501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic FPGA-based spatial navigation model with grid cells and place cells.
    Krishna A; Mittal D; Virupaksha SG; Nair AR; Narayanan R; Thakur CS
    Neural Netw; 2021 Jul; 139():45-63. PubMed ID: 33677378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Goal-oriented robot navigation learning using a multi-scale space representation.
    Llofriu M; Tejera G; Contreras M; Pelc T; Fellous JM; Weitzenfeld A
    Neural Netw; 2015 Dec; 72():62-74. PubMed ID: 26548944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Scale Extension in an Entorhinal-Hippocampal Model for Cognitive Map Building.
    Wang J; Yan R; Tang H
    Front Neurorobot; 2020; 14():592057. PubMed ID: 33519410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Place cells dynamically refine grid cell activities to reduce error accumulation during path integration in a continuous attractor model.
    Fernandez-Leon JA; Uysal AK; Ji D
    Sci Rep; 2022 Dec; 12(1):21443. PubMed ID: 36509873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    PLoS One; 2013; 8(4):e60599. PubMed ID: 23577130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How do spatial learning and memory occur in the brain? Coordinated learning of entorhinal grid cells and hippocampal place cells.
    Pilly PK; Grossberg S
    J Cogn Neurosci; 2012 May; 24(5):1031-54. PubMed ID: 22288394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recalibration of path integration in hippocampal place cells.
    Jayakumar RP; Madhav MS; Savelli F; Blair HT; Cowan NJ; Knierim JJ
    Nature; 2019 Feb; 566(7745):533-537. PubMed ID: 30742074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gateway identity and spatial remapping in a combined grid and place cell attractor.
    Baumann T; Mallot HA
    Neural Netw; 2023 Jan; 157():226-239. PubMed ID: 36371966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
    Aronov D; Nevers R; Tank DW
    Nature; 2017 Mar; 543(7647):719-722. PubMed ID: 28358077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.
    Grossberg S; Pilly PK
    PLoS Comput Biol; 2012; 8(10):e1002648. PubMed ID: 23055909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chicken and egg problem of grid cells and place cells.
    Morris G; Derdikman D
    Trends Cogn Sci; 2023 Feb; 27(2):125-138. PubMed ID: 36437188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigating with grid and place cells in cluttered environments.
    Edvardsen V; Bicanski A; Burgess N
    Hippocampus; 2020 Mar; 30(3):220-232. PubMed ID: 31408264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.
    Grossberg S; Pilly PK
    Philos Trans R Soc Lond B Biol Sci; 2014 Feb; 369(1635):20120524. PubMed ID: 24366136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Dynamics Indicate Parallel Integration of Environmental and Self-Motion Information by Place and Grid Cells.
    Laptev D; Burgess N
    Front Neural Circuits; 2019; 13():59. PubMed ID: 31636545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.