These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35523548)
41. Convolutional neural networks used for random structure SPP gratings spectral response prediction. Qu T; Zhu L; An Z Opt Lett; 2023 Jan; 48(2):448-451. PubMed ID: 36638480 [TBL] [Abstract][Full Text] [Related]
42. Orbital stress analysis--Part I: Simulation of orbital deformation following blunt injury by finite element analysis method. Al-Sukhun J; Kontio R; Lindqvist C J Oral Maxillofac Surg; 2006 Mar; 64(3):434-42. PubMed ID: 16487806 [TBL] [Abstract][Full Text] [Related]
43. Simultaneous brain structure segmentation in magnetic resonance images using deep convolutional neural networks. Maruyama T; Hayashi N; Sato Y; Ogura T; Uehara M; Ogura A; Watanabe H; Kitoh Y; Radiol Phys Technol; 2021 Dec; 14(4):358-365. PubMed ID: 34338999 [TBL] [Abstract][Full Text] [Related]
44. Direct inference of Patlak parametric images in whole-body PET/CT imaging using convolutional neural networks. Zaker N; Haddad K; Faghihi R; Arabi H; Zaidi H Eur J Nucl Med Mol Imaging; 2022 Oct; 49(12):4048-4063. PubMed ID: 35716176 [TBL] [Abstract][Full Text] [Related]
45. A Morphologically Individualized Deep Learning Brain Injury Model. Lin N; Wu S; Ji S J Neurotrauma; 2023 Oct; 40(19-20):2233-2247. PubMed ID: 37212255 [TBL] [Abstract][Full Text] [Related]
46. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD Clin Biomech (Bristol, Avon); 2017 Jan; 41():1-8. PubMed ID: 27842233 [TBL] [Abstract][Full Text] [Related]
47. Modelling of orbital deformation using finite-element analysis. Al-Sukhun J; Lindqvist C; Kontio R J R Soc Interface; 2006 Apr; 3(7):255-62. PubMed ID: 16849235 [TBL] [Abstract][Full Text] [Related]
48. A comparative analysis of dimensionality reduction surrogate modeling techniques for full human body finite element impact simulations. Frazer L; Kote V; Hostetler Z; Davis M; Nicolella DP Comput Methods Biomech Biomed Engin; 2024 Aug; 27(10):1250-1263. PubMed ID: 37458327 [TBL] [Abstract][Full Text] [Related]
49. Voluntary Head Rotational Velocity and Implications for Brain Injury Risk Metrics. Hernandez F; Camarillo DB J Neurotrauma; 2019 Apr; 36(7):1125-1135. PubMed ID: 29848152 [TBL] [Abstract][Full Text] [Related]
50. Brain age predicted using graph convolutional neural network explains neurodevelopmental trajectory in preterm neonates. Liu M; Lu M; Kim SY; Lee HJ; Duffy BA; Yuan S; Chai Y; Cole JH; Wu X; Toga AW; Jahanshad N; Gano D; Barkovich AJ; Xu D; Kim H Eur Radiol; 2024 Jun; 34(6):3601-3611. PubMed ID: 37957363 [TBL] [Abstract][Full Text] [Related]
51. Injury prediction in a side impact crash using human body model simulation. Golman AJ; Danelson KA; Miller LE; Stitzel JD Accid Anal Prev; 2014 Mar; 64():1-8. PubMed ID: 24316501 [TBL] [Abstract][Full Text] [Related]
52. Development of a finite element-based injury metric for pulmonary contusion part I: model development and validation. Stitzel JD; Gayzik FS; Hoth JJ; Mercier J; Gage HD; Morton KA; Duma SM; Payne RM Stapp Car Crash J; 2005 Nov; 49():271-89. PubMed ID: 17096278 [TBL] [Abstract][Full Text] [Related]
53. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Wang Y; Sang J; Ao R; Ma Y; Fu B Comput Methods Biomech Biomed Engin; 2020 Nov; 23(15):1190-1200. PubMed ID: 32772860 [TBL] [Abstract][Full Text] [Related]
54. A reanalysis of football impact reconstructions for head kinematics and finite element modeling. Sanchez EJ; Gabler LF; Good AB; Funk JR; Crandall JR; Panzer MB Clin Biomech (Bristol, Avon); 2019 Apr; 64():82-89. PubMed ID: 29559201 [TBL] [Abstract][Full Text] [Related]
55. A machine learning approach for magnetic resonance image-based mouse brain modeling and fast computation in controlled cortical impact. Lai C; Chen Y; Wang T; Liu J; Wang Q; Du Y; Feng Y Med Biol Eng Comput; 2020 Nov; 58(11):2835-2844. PubMed ID: 32954460 [TBL] [Abstract][Full Text] [Related]
56. Development of an Unbiased Validation Protocol to Assess the Biofidelity of Finite Element Head Models used in Prediction of Traumatic Brain Injury. Giordano C; Kleiven S Stapp Car Crash J; 2016 Nov; 60():363-471. PubMed ID: 27871103 [TBL] [Abstract][Full Text] [Related]
57. Direct estimation of regional lung volume change from paired and single CT images using residual regression neural network. Gerard SE; Chaudhary MFA; Herrmann J; Christensen GE; San José Estépar R; Reinhardt JM; Hoffman EA Med Phys; 2023 Sep; 50(9):5698-5714. PubMed ID: 36929883 [TBL] [Abstract][Full Text] [Related]
58. A network-based response feature matrix as a brain injury metric. Wu S; Zhao W; Rowson B; Rowson S; Ji S Biomech Model Mechanobiol; 2020 Jun; 19(3):927-942. PubMed ID: 31760600 [TBL] [Abstract][Full Text] [Related]
59. Embedded axonal fiber tracts improve finite element model predictions of traumatic brain injury. Hajiaghamemar M; Wu T; Panzer MB; Margulies SS Biomech Model Mechanobiol; 2020 Jun; 19(3):1109-1130. PubMed ID: 31811417 [TBL] [Abstract][Full Text] [Related]
60. Finite element analysis of controlled cortical impact-induced cell loss. Mao H; Jin X; Zhang L; Yang KH; Igarashi T; Noble-Haeusslein LJ; King AI J Neurotrauma; 2010 May; 27(5):877-88. PubMed ID: 20199194 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]