BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35523581)

  • 1. Rapid alternate monocular deprivation does not affect binocular balance and correlation in human adults.
    Lin 林温曼 W; Wei 魏君涵 J; Wang 王文静 W; Zou 邹李颖 L; Zhou 周诗旗 S; Jiang 江楠 N; Reynaud A; Zhou 周佳玮 J; Yu 于旭东 X; Hess RF
    eNeuro; 2022 May; 9(3):. PubMed ID: 35523581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ups and downs of sensory eye balance: Monocular deprivation has a biphasic effect on interocular dominance.
    Ramamurthy M; Blaser E
    Vision Res; 2021 Jun; 183():53-60. PubMed ID: 33684826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term monocular deprivation reduces inter-ocular suppression of the deprived eye.
    Wang M; McGraw P; Ledgeway T
    Vision Res; 2020 Aug; 173():29-40. PubMed ID: 32460171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocular Perceptual Deprivation from Interocular Suppression Temporarily Imbalances Ocular Dominance.
    Kim HW; Kim CY; Blake R
    Curr Biol; 2017 Mar; 27(6):884-889. PubMed ID: 28262490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monocular deprivation of Fourier phase information boosts the deprived eye's dominance during interocular competition but not interocular phase combination.
    Bai J; Dong X; He S; Bao M
    Neuroscience; 2017 Jun; 352():122-130. PubMed ID: 28391010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The shift in sensory eye dominance from short-term monocular deprivation exhibits no dependence on test spatial frequency.
    Chen Y; Mao Y; Zhou J; He Z; Hess RF
    Eye Vis (Lond); 2022 Sep; 9(1):32. PubMed ID: 36045414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic Potentiation Alters Perceptual Eye Dominance Plasticity Induced by a Few Hours of Monocular Patching in Adults.
    Sheynin Y; Chamoun M; Baldwin AS; Rosa-Neto P; Hess RF; Vaucher E
    Front Neurosci; 2019; 13():22. PubMed ID: 30766471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term monocular deprivation alters early components of visual evoked potentials.
    Lunghi C; Berchicci M; Morrone MC; Di Russo F
    J Physiol; 2015 Oct; 593(19):4361-72. PubMed ID: 26119530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Issues Revisited: Shifts in Binocular Balance Depend on the Deprivation Duration in Normal and Amblyopic Adults.
    Min SH; Chen Y; Jiang N; He Z; Zhou J; Hess RF
    Ophthalmol Ther; 2022 Dec; 11(6):2027-2044. PubMed ID: 36008603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporary monocular occlusion facilitates binocular fusion during rivalry.
    Sheynin Y; Proulx S; Hess RF
    J Vis; 2019 May; 19(5):23. PubMed ID: 31136647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The duration effect of short-term monocular deprivation measured by binocular rivalry and binocular combination.
    Prosper A; Pasqualetti M; Morrone MC; Lunghi C
    Vision Res; 2023 Oct; 211():108278. PubMed ID: 37352718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocular dominance plasticity: A binocular combination task finds no cumulative effect with repeated patching.
    Min SH; Baldwin AS; Hess RF
    Vision Res; 2019 Aug; 161():36-42. PubMed ID: 31194984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex.
    Saiepour MH; Rajendran R; Omrani A; Ma WP; Tao HW; Heimel JA; Levelt CN
    Curr Biol; 2015 Mar; 25(6):713-721. PubMed ID: 25754642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term monocular deprivation induces an interocular delay.
    Novozhilova S; Reynaud A; Hess RF
    Vision Res; 2021 Oct; 187():6-13. PubMed ID: 34102566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Internal neural states influence the short-term effect of monocular deprivation in human adults.
    Chen Y; Gao Y; He Z; Sun Z; Mao Y; Hess RF; Zhang P; Zhou J
    Elife; 2023 Jan; 12():. PubMed ID: 36705563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily dose-response from short-term monocular deprivation in adult humans.
    Zou L; Zhou C; Hess RF; Zhou J; Min SH
    Ophthalmic Physiol Opt; 2024 May; 44(3):564-575. PubMed ID: 38317572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negligible contribution of adaptation of ocular opponency neurons to the effect of short-term monocular deprivation.
    Wang J; Song F; He X; Bao M
    Front Psychol; 2023; 14():1282113. PubMed ID: 38274682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-dependent ocular dominance plasticity in adult mice.
    Lehmann K; Löwel S
    PLoS One; 2008 Sep; 3(9):e3120. PubMed ID: 18769674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.