These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35523733)

  • 1. Time-Resolved SAXS Study of Polarity- and Surfactant-Controlled Superlattice Transformations of Oleate-Capped Nanocubes During Solvent Removal.
    Lv ZP; Kapuscinski M; Járvás G; Yu S; Bergström L
    Small; 2022 Jun; 18(22):e2106768. PubMed ID: 35523733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Evolution of Superlattice Contraction and Defect-Induced Strain Anisotropy in Mesocrystals during Nanocube Self-Assembly.
    Kapuscinski M; Agthe M; Lv ZP; Liu Y; Segad M; Bergström L
    ACS Nano; 2020 May; 14(5):5337-5347. PubMed ID: 32338498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly.
    Josten E; Wetterskog E; Glavic A; Boesecke P; Feoktystov A; Brauweiler-Reuters E; Rücker U; Salazar-Alvarez G; Brückel T; Bergström L
    Sci Rep; 2017 Jun; 7(1):2802. PubMed ID: 28584236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable assembly of truncated nanocubes by evaporation-driven poor-solvent enrichment.
    Lv ZP; Kapuscinski M; Bergström L
    Nat Commun; 2019 Sep; 10(1):4228. PubMed ID: 31530817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering.
    Lu C; Akey AJ; Dahlman CJ; Zhang D; Herman IP
    J Am Chem Soc; 2012 Nov; 134(45):18732-8. PubMed ID: 23034055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing the Effects of the Non-solvent on the Ligand Shell of Nanoparticles and Their Crystallization.
    Lee B; Littrell K; Sha Y; Shevchenko EV
    J Am Chem Soc; 2019 Oct; 141(42):16651-16662. PubMed ID: 31554402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous phase transformation in nanocube assemblies.
    Zhang Y; Lu F; van der Lelie D; Gang O
    Phys Rev Lett; 2011 Sep; 107(13):135701. PubMed ID: 22026873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Controlled Reversible Formation and Phase Transformation of 3D Nanocrystal Superlattices Through In Situ Small-Angle X-ray Scattering.
    Marino E; Rosen DJ; Yang S; Tsai EHR; Murray CB
    Nano Lett; 2023 May; 23(10):4250-4257. PubMed ID: 37184728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-resolved viscoelastic properties of self-assembling iron oxide nanocube superlattices probed by quartz crystal microbalance with dissipation monitoring.
    Kapuscinski M; Agthe M; Bergström L
    J Colloid Interface Sci; 2018 Jul; 522():104-110. PubMed ID: 29579561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropy-Driven Pt
    Zhang J; Zhu J; Li R; Fang J; Wang Z
    Nano Lett; 2017 Jan; 17(1):362-367. PubMed ID: 27936796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tilted face-centered-cubic supercrystals of PbS nanocubes.
    Quan Z; Loc WS; Lin C; Luo Z; Yang K; Wang Y; Wang H; Wang Z; Fang J
    Nano Lett; 2012 Aug; 12(8):4409-13. PubMed ID: 22813064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring Self-Assembly and Ligand Exchange of PbS Nanocrystal Superlattices at the Liquid/Air Interface in Real Time.
    Maiti S; André A; Banerjee R; Hagenlocher J; Konovalov O; Schreiber F; Scheele M
    J Phys Chem Lett; 2018 Feb; 9(4):739-744. PubMed ID: 29365268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible Kirkwood-Alder transition observed in Pt3Cu2 nanoctahedron assemblies under controlled solvent annealing/drying conditions.
    Zhang J; Luo Z; Martens B; Quan Z; Kumbhar A; Porter N; Wang Y; Smilgies DM; Fang J
    J Am Chem Soc; 2012 Aug; 134(34):14043-9. PubMed ID: 22839450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex.
    Rath EM; Duff AP; Gilbert EP; Doherty G; Knott RB; Church WB
    Proteins; 2017 Jul; 85(7):1371-1378. PubMed ID: 28380660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces.
    Li R; Bian K; Hanrath T; Bassett WA; Wang Z
    J Am Chem Soc; 2014 Aug; 136(34):12047-55. PubMed ID: 25100031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.