BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35523772)

  • 1. Single-cell characterization of malignant phenotypes and microenvironment alteration in retinoblastoma.
    Wu C; Yang J; Xiao W; Jiang Z; Chen S; Guo D; Zhang P; Liu C; Yang H; Xie Z
    Cell Death Dis; 2022 May; 13(5):438. PubMed ID: 35523772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-cell transcriptomics enable the characterization of local extension in retinoblastoma.
    Liu Y; Hu W; Xie Y; Tang J; Ma H; Li J; Nie J; Wang Y; Gao Y; Cheng C; Li C; Ma Y; Su S; Zhang Z; Bao Y; Ren Y; Wang X; Sun F; Li S; Lu R
    Commun Biol; 2024 Jan; 7(1):11. PubMed ID: 38172218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Copy Number Alteration and Single-Nucleotide Variation Analysis in Matched Aqueous Humor and Tumor Samples in Children with Retinoblastoma.
    Schmidt MJ; Prabakar RK; Pike S; Yellapantula V; Peng CC; Kuhn P; Hicks J; Xu L; Berry JL
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Analysis of progress characteristics of retinoblastoma based on single cell transcriptome sequencing].
    Xu K; Nie W; Tong Q; Ma L; Liu J; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Oct; 38(10):3809-3824. PubMed ID: 36305411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of immunosuppressive factors in retinoblastoma cell secretomes and aqueous humor from patients.
    Cuadrado-Vilanova M; Liu J; Paco S; Aschero R; Burgueño V; Sirab N; Pascual-Pasto G; Correa G; Balaguer-Lluna L; Castillo-Ecija H; Perez-Jaume S; Muñoz-Aznar O; Roldan M; Suñol M; Schaiquevich P; Aerts I; Doz F; Cassoux N; Lubieniecki F; Benitez-Ribas D; Lavarino C; Mora J; Chantada GL; Catala-Mora J; Radvanyi F; Carcaboso AM
    J Pathol; 2022 Jul; 257(3):327-339. PubMed ID: 35254670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism drives macrophage heterogeneity in the tumor microenvironment.
    Li S; Yu J; Huber A; Kryczek I; Wang Z; Jiang L; Li X; Du W; Li G; Wei S; Vatan L; Szeliga W; Chinnaiyan AM; Green MD; Cieslik M; Zou W
    Cell Rep; 2022 Apr; 39(1):110609. PubMed ID: 35385733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of NCC-RbC-51, an RB cell line isolated from a metastatic site.
    Ravishankar H; Mangani AS; Shankar MB; Joshi M; Devasena T; Parameswaran S; Subramaniam K
    Histochem Cell Biol; 2020 Feb; 153(2):101-109. PubMed ID: 31781967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting LxCxE cleft pocket of retinoblastoma protein in M2 macrophages inhibits ovarian cancer progression.
    Tcyganov EN; Kwak T; Yang X; Poli ANR; Hart C; Bhuniya A; Cassel J; Kossenkov A; Auslander N; Lu L; Sharma P; Mendoza MGC; Zhigarev D; Cadungog MG; Jean S; Chatterjee-Paer S; Weiner D; Donthireddy L; Bristow B; Zhang R; Tyurin VA; Tyurina YY; Bayir H; Kagan VE; Salvino JM; Montaner LJ
    bioRxiv; 2024 May; ():. PubMed ID: 38798466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful.
    Szulc-Kielbik I; Kielbik M
    Exp Suppl; 2022; 113():107-140. PubMed ID: 35165862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy?
    Tajaldini M; Saeedi M; Amiriani T; Amiriani AH; Sedighi S; Mohammad Zadeh F; Dehghan M; Jahanshahi M; Zanjan Ghandian M; Khalili P; Poorkhani AH; Alizadeh AM; Khori V
    Eur J Pharmacol; 2022 Aug; 928():175087. PubMed ID: 35679891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shaping Polarization Of Tumor-Associated Macrophages In Cancer Immunotherapy.
    Gao J; Liang Y; Wang L
    Front Immunol; 2022; 13():888713. PubMed ID: 35844605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic and Transcriptomic Tumor Heterogeneity in Bilateral Retinoblastoma.
    Winter U; Ganiewich D; Ottaviani D; Zugbi S; Aschero R; Sendoya JM; Cafferata EG; Mena M; Sgroi M; Sampor C; Lubieniecki F; Fandiño A; Abba MC; Doz F; Podhjacer O; Carcaboso AM; Letouzé E; Radvanyi F; Chantada GL; Llera AS; Schaiquevich P
    JAMA Ophthalmol; 2020 May; 138(5):569-574. PubMed ID: 32191268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability in retinoblastoma genome stability is driven by age and not heritability.
    Polski A; Xu L; Prabakar RK; Gai X; Kim JW; Shah R; Jubran R; Kuhn P; Cobrinik D; Hicks J; Berry JL
    Genes Chromosomes Cancer; 2020 Oct; 59(10):584-590. PubMed ID: 32390242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors.
    Singh HP; Wang S; Stachelek K; Lee S; Reid MW; Thornton ME; Craft CM; Grubbs BH; Cobrinik D
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):E9391-E9400. PubMed ID: 30213853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-associated macrophage-derived chemokine CCL5 facilitates the progression and immunosuppressive tumor microenvironment of clear cell renal cell carcinoma.
    Xu W; Wu Y; Liu W; Anwaier A; Tian X; Su J; Huang H; Wei G; Qu Y; Zhang H; Ye D
    Int J Biol Sci; 2022; 18(13):4884-4900. PubMed ID: 35982911
    [No Abstract]   [Full Text] [Related]  

  • 16. Downregulation of MST4 Underlies a Novel Inhibitory Role of MicroRNA Let-7a in the Progression of Retinoblastoma.
    Zhang X; Song L; Huang Y; Han S; Hou M; Li H
    Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):28. PubMed ID: 32539131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrum of germline
    Rojanaporn D; Boontawon T; Chareonsirisuthigul T; Thanapanpanich O; Attaseth T; Saengwimol D; Anurathapan U; Sujirakul T; Kaewkhaw R; Hongeng S
    Mol Vis; 2018; 24():778-788. PubMed ID: 30636860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-129-5p suppresses proliferation, migration and invasion of retinoblastoma cells through PI3K/AKT signaling pathway by targeting PAX6.
    Liu Y; Liang G; Wang H; Liu Z
    Pathol Res Pract; 2019 Dec; 215(12):152641. PubMed ID: 31727502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BET Inhibition Sensitizes Immunologically Cold Rb-Deficient Prostate Cancer to Immune Checkpoint Blockade.
    Olson BM; Chaudagar K; Bao R; Saha SS; Hong C; Li M; Rameshbabu S; Chen R; Thomas A; Patnaik A
    Mol Cancer Ther; 2023 Jun; 22(6):751-764. PubMed ID: 37014264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer‑associated fibroblast‑induced M2‑polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitor‑1 pathway.
    Chen S; Morine Y; Tokuda K; Yamada S; Saito Y; Nishi M; Ikemoto T; Shimada M
    Int J Oncol; 2021 Aug; 59(2):. PubMed ID: 34195849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.