These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35523811)

  • 1. Split BiRNN for real-time activity recognition using radar and deep learning.
    Werthen-Brabants L; Bhavanasi G; Couckuyt I; Dhaene T; Deschrijver D
    Sci Rep; 2022 May; 12(1):7436. PubMed ID: 35523811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined CNN and RNN Neural Networks for GPR Detection of Railway Subgrade Diseases.
    Liu H; Wang S; Jing G; Yu Z; Yang J; Zhang Y; Guo Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
    Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driving Activity Recognition Using UWB Radar and Deep Neural Networks.
    Brishtel I; Krauss S; Chamseddine M; Rambach JR; Stricker D
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FMCW Radar Human Action Recognition Based on Asymmetric Convolutional Residual Blocks.
    Zhang Y; Tang H; Wu Y; Wang B; Yang D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Radar Human Activity Classification Using Synthetic Data with Image Transformation.
    Hernangómez R; Visentin T; Servadei L; Khodabakhshandeh H; Stańczak S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Multi-Class Approach for Human Fall Detection Based on Doppler Signatures.
    Cardenas JD; Gutierrez CA; Aguilar-Ponce R
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36673883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radar Human Activity Recognition with an Attention-Based Deep Learning Network.
    Huan S; Wu L; Zhang M; Wang Z; Yang C
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Movement Recognition Based on 3D Point Cloud Spatiotemporal Information from Millimeter-Wave Radar.
    Dang X; Jin P; Hao Z; Ke W; Deng H; Wang L
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An End-to-End Deep Learning Approach for State Recognition of Multifunction Radars.
    Xu X; Bi D; Pan J
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Learning Method for Human Sleeping Pose Estimation with Millimeter Wave Radar.
    Li Z; Chen K; Xie Y
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whitening-Aided Learning from Radar Micro-Doppler Signatures for Human Activity Recognition.
    Sadeghi Adl Z; Ahmad F
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doppler Radar Sensor-Based Fall Detection Using a Convolutional Bidirectional Long Short-Term Memory Model.
    Li Z; Du J; Zhu B; Greenwald SE; Xu L; Yao Y; Bao N
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining a wireless radar sleep monitoring device with deep machine learning techniques to assess obstructive sleep apnea severity.
    Lin SY; Tsai CY; Majumdar A; Ho YH; Huang YW; Kao CK; Yeh SM; Hsu WH; Kuan YC; Lee KY; Feng PH; Tseng CH; Chen KY; Kang JH; Lee HC; Wu CJ; Liu WT
    J Clin Sleep Med; 2024 Aug; 20(8):1267-1277. PubMed ID: 38546033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Human Activities Based on a New Structure of Skeleton Features and Deep Learning Model.
    Jaouedi N; Perales FJ; Buades JM; Boujnah N; Bouhlel MS
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition.
    Addabbo P; Bernardi ML; Biondi F; Cimitile M; Clemente C; Orlando D
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep Learning.
    Buchman D; Drozdov M; Krilavičius T; Maskeliūnas R; Damaševičius R
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lightweight hybrid vision transformer network for radar-based human activity recognition.
    Huan S; Wang Z; Wang X; Wu L; Yang X; Huang H; Dai GE
    Sci Rep; 2023 Oct; 13(1):17996. PubMed ID: 37865672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Based Classification of Human Behaviors and Falls in Restroom via Dual Doppler Radar Measurements.
    Saho K; Hayashi S; Tsuyama M; Meng L; Masugi M
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.