These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35523989)

  • 1. Slow wave synchronization and sleep state transitions.
    Guo D; Thomas RJ; Liu Y; Shea SA; Lu J; Peng CK
    Sci Rep; 2022 May; 12(1):7467. PubMed ID: 35523989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of slow wave sleep proximity on evoked K-complex generation.
    Nicholas CL; Trinder J; Crowley KE; Colrain IM
    Neurosci Lett; 2006 Aug; 404(1-2):127-31. PubMed ID: 16784812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spontaneous K-complex during stage 2 sleep: is it the 'forerunner' of delta waves?
    De Gennaro L; Ferrara M; Bertini M
    Neurosci Lett; 2000 Sep; 291(1):41-3. PubMed ID: 10962149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Niethard N; Brodt S; Born J
    J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous hemodynamic oscillations during human sleep and sleep stage transitions characterized with near-infrared spectroscopy.
    Näsi T; Virtanen J; Noponen T; Toppila J; Salmi T; Ilmoniemi RJ
    PLoS One; 2011; 6(10):e25415. PubMed ID: 22043284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How to become an expert: A new perspective on the role of sleep in the mastery of procedural skills.
    Fogel SM; Ray LB; Binnie L; Owen AM
    Neurobiol Learn Mem; 2015 Nov; 125():236-48. PubMed ID: 26477835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Event-Related Potential Study of Recovery of Consciousness during Forced Awakening from Slow-Wave Sleep and Rapid Eye Movement Sleep.
    Liaukovich K; Sazhin S; Bobrov P; Ukraintseva Y
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of REM and slow wave sleep in the rat.
    Frank MG; Heller HC
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1792-9. PubMed ID: 9227592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow-wave sleep: From the cell to the clinic.
    Léger D; Debellemaniere E; Rabat A; Bayon V; Benchenane K; Chennaoui M
    Sleep Med Rev; 2018 Oct; 41():113-132. PubMed ID: 29490885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow waves during REM sleep in mice.
    Nazari M; Karimi Abadchi J; Naghizadeh M; Bermudez-Contreras EJ; McNaughton BL; Tatsuno M; Mohajerani MH
    Cell Rep; 2023 May; 42(5):112450. PubMed ID: 37126447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of slow-wave sleep across the night: a comparison for infants, children, and adults.
    Bes F; Schulz H; Navelet Y; Salzarulo P
    Sleep; 1991 Feb; 14(1):5-12. PubMed ID: 1811320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spindle and slow wave rhythms at slow wave sleep transitions are linked to strong shifts in the cortical direct current potential.
    Marshall L; Mölle M; Born J
    Neuroscience; 2003; 121(4):1047-53. PubMed ID: 14580954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow wave sleep and cyclic alternating pattern (CAP) in HIV-infected asymptomatic men.
    Ferini-Strambi L; Oldani A; Tirloni G; Zucconi M; Castagna A; Lazzarin A; Smirne S
    Sleep; 1995 Jul; 18(6):446-50. PubMed ID: 7481416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective slow-wave sleep suppression affects glucose tolerance and melatonin secretion. The role of sleep architecture.
    Ukraintseva YV; Liaukovich KM; Saltykov KA; Belov DA; Nizhnik АN
    Sleep Med; 2020 Mar; 67():171-183. PubMed ID: 31935619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural ensemble reactivation in rapid eye movement and slow-wave sleep coordinate with muscle activity to promote rapid motor skill learning.
    Eckert MJ; McNaughton BL; Tatsuno M
    Philos Trans R Soc Lond B Biol Sci; 2020 May; 375(1799):20190655. PubMed ID: 32248776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice.
    Ahnaou A; Raeymaekers L; Steckler T; Drinkenbrug WH
    Behav Brain Res; 2015 Apr; 282():218-26. PubMed ID: 25591476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep.
    Grahnstedt S; Ursin R
    Behav Brain Res; 1985 Dec; 18(3):233-9. PubMed ID: 4091961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The renin secretion profile under the influence of sleep deprivation and the neuropeptides CRH and GHRH.
    Künzel H; Schüssler P; Yassouridis A; Uhr M; Kluge M; Steiger A
    Psychoneuroendocrinology; 2020 Oct; 120():104799. PubMed ID: 32682174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampal barques and their manifestation as 14&6 Hz positive spikes during sleep.
    Kokkinos V; Hussein H; Sakelliadou DG; Mark Richardson R; Bagić AΙ; Urban A
    Clin Neurophysiol; 2024 Jan; 157():37-43. PubMed ID: 38042011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.