These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 35524029)

  • 1. Metal concentrations in wetland plant tissues influences transfer to terrestrial food webs.
    Hammill E; Pendleton M; Brahney J; Kettenring KM; Atwood TB
    Ecotoxicology; 2022 Jul; 31(5):836-845. PubMed ID: 35524029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metals in wetland plants and soil of Lake Taihu, China.
    Yang H; Shen Z; Zhu S; Wang W
    Environ Toxicol Chem; 2008 Jan; 27(1):38-42. PubMed ID: 18092866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence and Plant Uptake of Heavy Metals in Tidal Marsh Wetland Soils.
    Chintapenta LK; Ommanney KI; Ozbay G
    Front Public Health; 2022; 10():821892. PubMed ID: 35265575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation of heavy metals by Phragmites australis cultivated in synthesized substrates.
    Wang H; Jia Y
    J Environ Sci (China); 2009; 21(10):1409-14. PubMed ID: 19999996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration.
    Weis JS; Weis P
    Environ Int; 2004 Jul; 30(5):685-700. PubMed ID: 15051245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds.
    Alhashemi AS; Karbassi AR; Kiabi BH; Monavari SM; Nabavi SM; Sekhavatjou MS
    Biol Trace Elem Res; 2011 Sep; 142(3):500-16. PubMed ID: 20694580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of long-term phosphorus uptake by
    Carrillo V; Collins C; Brisson J; Vidal G
    Int J Phytoremediation; 2022; 24(6):610-621. PubMed ID: 34382468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the
    Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P
    Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland.
    Torres KC; Johnson ML
    Environ Toxicol Chem; 2001 Nov; 20(11):2617-26. PubMed ID: 11699790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.
    Sochacki A; Guy B; Faure O; Surmacz-Górska J
    Int J Phytoremediation; 2015; 17(11):1068-72. PubMed ID: 25848916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants.
    Vymazal J
    Sci Total Environ; 2016 Feb; 544():495-8. PubMed ID: 26673940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.
    Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ
    Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan.
    Batool A
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31508-31521. PubMed ID: 31478177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland.
    Su F; Wang T; Zhang H; Song Z; Feng X; Zhang K
    Environ Monit Assess; 2018 May; 190(6):365. PubMed ID: 29808431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya.
    Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM
    Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of the heavy metals Co, Cu, and Pb in sediments and Typha spp. And Phragmites mauritianus in three Zambian wetlands.
    Nabuyanda MM; Kelderman P; van Bruggen J; Irvine K
    J Environ Manage; 2022 Feb; 304():114133. PubMed ID: 34864515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis.
    Al-Homaidan AA; Al-Otaibi TG; El-Sheikh MA; Al-Ghanayem AA; Ameen F
    Environ Monit Assess; 2020 Feb; 192(3):202. PubMed ID: 32107648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed.
    Bragato C; Brix H; Malagoli M
    Environ Pollut; 2006 Dec; 144(3):967-75. PubMed ID: 16574288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.