These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35524062)

  • 1. Optimized Tools and Methods for Methanotroph Genome Editing.
    Nath S; Henard JM; Henard CA
    Methods Mol Biol; 2022; 2489():421-434. PubMed ID: 35524062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a CRISPR/Cas9 System for Methylococcus capsulatus
    Tapscott T; Guarnieri MT; Henard CA
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath.
    Henard CA; Wu C; Xiong W; Henard JM; Davidheiser-Kroll B; Orata FD; Guarnieri MT
    Appl Environ Microbiol; 2021 Aug; 87(18):e0088121. PubMed ID: 34288705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a broad-host-range Anderson promoter series and particulate methane monooxygenase promoter variants expand the methanotroph genetic toolbox.
    Bhat EH; Henard JM; Lee SA; McHalffey D; Ravulapati MS; Rogers EV; Yu L; Skiles D; Henard CA
    Synth Syst Biotechnol; 2024 Jun; 9(2):250-258. PubMed ID: 38435708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering in methanotrophic bacteria.
    Kalyuzhnaya MG; Puri AW; Lidstrom ME
    Metab Eng; 2015 May; 29():142-152. PubMed ID: 25825038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bioconversion of methane by metabolically engineered methanotrophs].
    Guo S; Fei Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):816-830. PubMed ID: 33783152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals.
    Nguyen DTN; Lee OK; Nguyen TT; Lee EY
    Biotechnol Adv; 2021; 47():107700. PubMed ID: 33548453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Proteobacterial Methanotroph
    Scanlan J; Guillonneau R; Cunningham MR; Najmin S; Mausz MA; Murphy A; Murray LL; Zhang L; Kumaresan D; Chen Y
    mBio; 2022 Jun; 13(3):e0024722. PubMed ID: 35575546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facultative methanotrophs are abundant at terrestrial natural gas seeps.
    Farhan Ul Haque M; Crombie AT; Ensminger SA; Baciu C; Murrell JC
    Microbiome; 2018 Jun; 6(1):118. PubMed ID: 29954460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic tools for the industrially promising methanotroph Methylomicrobium buryatense.
    Puri AW; Owen S; Chu F; Chavkin T; Beck DA; Kalyuzhnaya MG; Lidstrom ME
    Appl Environ Microbiol; 2015 Mar; 81(5):1775-81. PubMed ID: 25548049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds.
    Guo S; Nguyen DTN; Chau THT; Fei Q; Lee EY
    Adv Biochem Eng Biotechnol; 2022; 180():91-126. PubMed ID: 35246697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Sphagnum mosses in the methane cycling of a boreal mire.
    Larmola T; Tuittila ES; Tiirola M; Nykänen H; Martikainen PJ; Yrjälä K; Tuomivirta T; Fritze H
    Ecology; 2010 Aug; 91(8):2356-65. PubMed ID: 20836457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks.
    Hill EA; Chrisler WB; Beliaev AS; Bernstein HC
    Bioresour Technol; 2017 Mar; 228():250-256. PubMed ID: 28092828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bioconversion of C1 gases and genetic engineering modification of gas-utilizing microorganisms].
    Zhou Y; Ruan Z; Fang C; Chen X; Xu H; Wang Z; Yuan Z
    Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3125-3142. PubMed ID: 37622352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in the Genetic Manipulation of Methylosinus trichosporium OB3b.
    Ro SY; Rosenzweig AC
    Methods Enzymol; 2018; 605():335-349. PubMed ID: 29909832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A methanotroph-based biorefinery: Potential scenarios for generating multiple products from a single fermentation.
    Strong PJ; Kalyuzhnaya M; Silverman J; Clarke WP
    Bioresour Technol; 2016 Sep; 215():314-323. PubMed ID: 27146469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into methanotroph carbon flux pave the way for methane biocatalysis.
    Henard CA
    Trends Biotechnol; 2023 Mar; 41(3):298-300. PubMed ID: 36710132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building a genome engineering toolbox in nonmodel prokaryotic microbes.
    Freed E; Fenster J; Smolinski SL; Walker J; Henard CA; Gill R; Eckert CA
    Biotechnol Bioeng; 2018 Sep; 115(9):2120-2138. PubMed ID: 29750332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol.
    Nguyen AD; Kim D; Lee EY
    BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs.
    Bennett RK; Steinberg LM; Chen W; Papoutsakis ET
    Curr Opin Biotechnol; 2018 Apr; 50():81-93. PubMed ID: 29216497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.