BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35524108)

  • 1. Single-Cell RNA Sequencing in Yeast Using the 10× Genomics Chromium Device.
    Vermeersch L; Jariani A; Helsen J; Heineike BM; Verstrepen KJ
    Methods Mol Biol; 2022; 2477():3-20. PubMed ID: 35524108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Comparative Analyses of 10X Genomics Chromium and Smart-seq2.
    Wang X; He Y; Zhang Q; Ren X; Zhang Z
    Genomics Proteomics Bioinformatics; 2021 Apr; 19(2):253-266. PubMed ID: 33662621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast.
    Jariani A; Vermeersch L; Cerulus B; Perez-Samper G; Voordeckers K; Van Brussel T; Thienpont B; Lambrechts D; Verstrepen KJ
    Elife; 2020 May; 9():. PubMed ID: 32420869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Transcriptomic Analysis of Hematopoietic Cells.
    Strzelecka PM; Ranzoni AM; Cvejic A
    Methods Mol Biol; 2021; 2185():135-158. PubMed ID: 33165847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automation enables high-throughput and reproducible single-cell transcriptomics library preparation.
    Kind D; Baskaran P; Ramirez F; Giner M; Hayes M; Santacruz D; Koss CK; El Kasmi KC; Wijayawardena B; Viollet C
    SLAS Technol; 2022 Apr; 27(2):135-142. PubMed ID: 35058211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Analysis of Single-Cell RNA Sequencing Platforms and Methods.
    Ashton JM; Rehrauer H; Myers J; Myers J; Zanche M; Balys M; Foox J; Mason CE; Steen R; Kuentzel M; Aquino C; Garcia-Reyero N; Chittur SV
    J Biomol Tech; 2021 Dec; 32(4):. PubMed ID: 35837267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium 10× Single-Cell 3' mRNA Sequencing of Tumor-Infiltrating Lymphocytes.
    De Simone M; Rossetti G; Pagani M
    Methods Mol Biol; 2019; 1979():87-110. PubMed ID: 31028634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of single-cell suspensions from the human placenta.
    Garcia-Flores V; Xu Y; Pusod E; Romero R; Pique-Regi R; Gomez-Lopez N
    Nat Protoc; 2023 Mar; 18(3):732-754. PubMed ID: 36451054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Single-Cell Sequencing Guide for Immunologists.
    See P; Lum J; Chen J; Ginhoux F
    Front Immunol; 2018; 9():2425. PubMed ID: 30405621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing.
    Cohen P; DeGrace EJ; Danziger O; Patel RS; Barrall EA; Bobrowski T; Kehrer T; Cupic A; Miorin L; García-Sastre A; Rosenberg BR
    Microbiol Spectr; 2023 Sep; 11(5):e0077623. PubMed ID: 37676044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CaSee: A lightning transfer-learning model directly used to discriminate cancer/normal cells from scRNA-seq.
    Sh Y; Zhang X; Yang Z; Dong J; Wang Y; Zhou Y; Li X; Guo C; Hu Z
    Oncogene; 2022 Oct; 41(44):4866-4876. PubMed ID: 36192479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PBMC fixation and processing for Chromium single-cell RNA sequencing.
    Chen J; Cheung F; Shi R; Zhou H; Lu W;
    J Transl Med; 2018 Jul; 16(1):198. PubMed ID: 30016977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the Allele-Specific Expression of SNVs From 10× Genomics Single-Cell RNA-Sequencing Data.
    M PN; Liu H; Bousounis P; Spurr L; Alomran N; Ibeawuchi H; Sein J; Reece-Stremtan D; Horvath A
    Genes (Basel); 2020 Feb; 11(3):. PubMed ID: 32106453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis.
    Wu SZ; Roden DL; Al-Eryani G; Bartonicek N; Harvey K; Cazet AS; Chan CL; Junankar S; Hui MN; Millar EA; Beretov J; Horvath L; Joshua AM; Stricker P; Wilmott JS; Quek C; Long GV; Scolyer RA; Yeung BZ; Segara D; Mak C; Warrier S; Powell JE; O'Toole S; Lim E; Swarbrick A
    Genome Med; 2021 May; 13(1):81. PubMed ID: 33971952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-Length Single-Cell RNA-Sequencing with FLASH-seq.
    Hahaut V; Picelli S
    Methods Mol Biol; 2023; 2584():123-164. PubMed ID: 36495447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data.
    Freytag S; Tian L; Lönnstedt I; Ng M; Bahlo M
    F1000Res; 2018; 7():1297. PubMed ID: 30228881
    [No Abstract]   [Full Text] [Related]  

  • 20. Advances in single-cell sequencing: insights from organ transplantation.
    Wang Y; Wang JY; Schnieke A; Fischer K
    Mil Med Res; 2021 Aug; 8(1):45. PubMed ID: 34389057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.