BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35524123)

  • 1. Quantitative Proteomics in Yeast : From bSLIM and Proteome Discoverer Outputs to Graphical Assessment of the Significance of Protein Quantification Scores.
    Sénécaut N; Poulain P; Lignières L; Terrier S; Legros V; Chevreux G; Lelandais G; Camadro JM
    Methods Mol Biol; 2022; 2477():275-292. PubMed ID: 35524123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Insights into Quantitative Proteomics from an Innovative Bottom-Up Simple Light Isotope Metabolic (bSLIM) Labeling Data Processing Strategy.
    Sénécaut N; Alves G; Weisser H; Lignières L; Terrier S; Yang-Crosson L; Poulain P; Lelandais G; Yu YK; Camadro JM
    J Proteome Res; 2021 Mar; 20(3):1476-1487. PubMed ID: 33573382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Light Isotope Metabolic Labeling (SLIM-labeling) Strategy: A Powerful Tool to Address the Dynamics of Proteome Variations
    Léger T; Garcia C; Collomb L; Camadro JM
    Mol Cell Proteomics; 2017 Nov; 16(11):2017-2031. PubMed ID: 28821603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yeast membrane proteomics using leucine metabolic labelling: Bioinformatic data processing and exemplary application to the ER-intramembrane protease Ypf1.
    Nilse L; Avci D; Heisterkamp P; Serang O; Lemberg MK; Schilling O
    Biochim Biophys Acta; 2016 Oct; 1864(10):1363-71. PubMed ID: 27426920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice.
    Overmyer KA; Tyanova S; Hebert AS; Westphall MS; Cox J; Coon JJ
    Nat Protoc; 2018 Jan; 13(1):293-306. PubMed ID: 29323663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using
    Maccarrone G; Chen A; Filiou MD
    Methods Mol Biol; 2017; 1546():235-243. PubMed ID: 27896773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partially isobaric peptide termini labeling assisted proteome quantitation based on MS and MS/MS signals.
    Zhang S; Wu Q; Shan Y; Zhou Y; Zhang L; Zhang Y
    J Proteomics; 2015 Jan; 114():152-60. PubMed ID: 25434490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative proteomics targeting classes of motif-containing peptides using immunoaffinity-based mass spectrometry.
    Olsson N; James P; Borrebaeck CA; Wingren C
    Mol Cell Proteomics; 2012 Aug; 11(8):342-54. PubMed ID: 22543061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DDASSQ: An open-source, multiple peptide sequencing strategy for label free quantification based on an OpenMS pipeline in the KNIME analytics platform.
    Svecla M; Garrone G; Faré F; Aletti G; Norata GD; Beretta G
    Proteomics; 2021 Aug; 21(16):e2000319. PubMed ID: 34312990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteome analysis using isobaric peptide termini labeling (IPTL).
    Arntzen MO; Koehler CJ; Treumann A; Thiede B
    Methods Mol Biol; 2011; 753():65-76. PubMed ID: 21604116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.
    Tu C; Shen S; Sheng Q; Shyr Y; Qu J
    J Proteomics; 2017 Jan; 152():276-282. PubMed ID: 27903464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Clustering Improves Label-Free Quantification of Low-Abundant Proteins.
    Griss J; Stanek F; Hudecz O; Dürnberger G; Perez-Riverol Y; Vizcaíno JA; Mechtler K
    J Proteome Res; 2019 Apr; 18(4):1477-1485. PubMed ID: 30859831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pyQms enables universal and accurate quantification of mass spectrometry data.
    Leufken J; Niehues A; Sarin LP; Wessel F; Hippler M; Leidel SA; Fufezan C
    Mol Cell Proteomics; 2017 Oct; 16(10):1736-1745. PubMed ID: 28729385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental design and data-analysis in label-free quantitative LC/MS proteomics: A tutorial with MSqRob.
    Goeminne LJE; Gevaert K; Clement L
    J Proteomics; 2018 Jan; 171():23-36. PubMed ID: 28391044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking stable isotope labeling based quantitative proteomics.
    Altelaar AF; Frese CK; Preisinger C; Hennrich ML; Schram AW; Timmers HT; Heck AJ; Mohammed S
    J Proteomics; 2013 Aug; 88():14-26. PubMed ID: 23085607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Quantification of Intact Proteins via Chemical Isotope Labeling and Mass Spectrometry.
    Liu Z; Wang R; Liu J; Sun R; Wang F
    J Proteome Res; 2019 May; 18(5):2185-2194. PubMed ID: 30990045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Quantitative Proteomics in Yeast.
    Léger T; Garcia C; Videlier M; Camadro JM
    Methods Mol Biol; 2016; 1361():289-307. PubMed ID: 26483028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A robust method for quantitative high-throughput analysis of proteomes by 18O labeling.
    Bonzon-Kulichenko E; Pérez-Hernández D; Núñez E; Martínez-Acedo P; Navarro P; Trevisan-Herraz M; Ramos Mdel C; Sierra S; Martínez-Martínez S; Ruiz-Meana M; Miró-Casas E; García-Dorado D; Redondo JM; Burgos JS; Vázquez J
    Mol Cell Proteomics; 2011 Jan; 10(1):M110.003335. PubMed ID: 20807836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.