BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35524123)

  • 41. Systematic evaluation of label-free and super-SILAC quantification for proteome expression analysis.
    Tebbe A; Klammer M; Sighart S; Schaab C; Daub H
    Rapid Commun Mass Spectrom; 2015 May; 29(9):795-801. PubMed ID: 26377007
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hyperplexing: a method for higher-order multiplexed quantitative proteomics provides a map of the dynamic response to rapamycin in yeast.
    Dephoure N; Gygi SP
    Sci Signal; 2012 Mar; 5(217):rs2. PubMed ID: 22457332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical isotope labeling for quantitative proteomics.
    Tian X; Permentier HP; Bischoff R
    Mass Spectrom Rev; 2023 Mar; 42(2):546-576. PubMed ID: 34091937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Amino acid residue specific stable isotope labeling for quantitative proteomics.
    Zhu H; Pan S; Gu S; Bradbury EM; Chen X
    Rapid Commun Mass Spectrom; 2002; 16(22):2115-23. PubMed ID: 12415544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative Evaluation of Proteome Discoverer and FragPipe for the TMT-Based Proteome Quantification.
    He T; Liu Y; Zhou Y; Li L; Wang H; Chen S; Gao J; Jiang W; Yu Y; Ge W; Chang HY; Fan Z; Nesvizhskii AI; Guo T; Sun Y
    J Proteome Res; 2022 Dec; 21(12):3007-3015. PubMed ID: 36315902
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An assessment of false discovery rates and statistical significance in label-free quantitative proteomics with combined filters.
    Li Q; Roxas BA
    BMC Bioinformatics; 2009 Feb; 10():43. PubMed ID: 19187558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Latest developments in sample treatment for 18O-isotopic labeling for proteomics mass spectrometry-based approaches: a critical review.
    Capelo JL; Carreira RJ; Fernandes L; Lodeiro C; Santos HM; Simal-Gandara J
    Talanta; 2010 Feb; 80(4):1476-86. PubMed ID: 20082805
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermo-msf-parser: an open source Java library to parse and visualize Thermo Proteome Discoverer msf files.
    Colaert N; Barsnes H; Vaudel M; Helsens K; Timmerman E; Sickmann A; Gevaert K; Martens L
    J Proteome Res; 2011 Aug; 10(8):3840-3. PubMed ID: 21714566
    [TBL] [Abstract][Full Text] [Related]  

  • 49. LFQProfiler and RNP(xl): Open-Source Tools for Label-Free Quantification and Protein-RNA Cross-Linking Integrated into Proteome Discoverer.
    Veit J; Sachsenberg T; Chernev A; Aicheler F; Urlaub H; Kohlbacher O
    J Proteome Res; 2016 Sep; 15(9):3441-8. PubMed ID: 27476824
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new sample preparation method for the absolute quantitation of a target proteome using (18)O labeling combined with multiple reaction monitoring mass spectrometry.
    Li J; Zhou L; Wang H; Yan H; Li N; Zhai R; Jiao F; Hao F; Jin Z; Tian F; Peng B; Zhang Y; Qian X
    Analyst; 2015 Feb; 140(4):1281-90. PubMed ID: 25568899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Review on Quantitative Multiplexed Proteomics.
    Pappireddi N; Martin L; Wühr M
    Chembiochem; 2019 May; 20(10):1210-1224. PubMed ID: 30609196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SILAC-Based Quantitative Phosphoproteomics in Yeast.
    Hernáez ML; Gil C
    Methods Mol Biol; 2023; 2603():103-115. PubMed ID: 36370273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coisolation of Peptide Pairs for Peptide Identification and MS/MS-Based Quantification.
    Smith IR; Eng JK; Barente AS; Hogrebe A; Llovet A; Rodriguez-Mias RA; Villén J
    Anal Chem; 2022 Nov; 94(44):15198-15206. PubMed ID: 36306373
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global absolute quantification of a proteome: Challenges in the deployment of a QconCAT strategy.
    Brownridge P; Holman SW; Gaskell SJ; Grant CM; Harman VM; Hubbard SJ; Lanthaler K; Lawless C; O'Cualain R; Sims P; Watkins R; Beynon RJ
    Proteomics; 2011 Aug; 11(15):2957-70. PubMed ID: 21710569
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparing SILAC- and stable isotope dimethyl-labeling approaches for quantitative proteomics.
    Lau HT; Suh HW; Golkowski M; Ong SE
    J Proteome Res; 2014 Sep; 13(9):4164-74. PubMed ID: 25077673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments.
    Paulo JA; O'Connell JD; Gygi SP
    J Am Soc Mass Spectrom; 2016 Oct; 27(10):1620-5. PubMed ID: 27400695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative Translation Proteomics Using mePROD.
    Klann K; Münch C
    Methods Mol Biol; 2022; 2428():75-87. PubMed ID: 35171474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification and quantification of protein carbonylation using light and heavy isotope labeled Girard's P reagent.
    Mirzaei H; Regnier F
    J Chromatogr A; 2006 Nov; 1134(1-2):122-33. PubMed ID: 16996067
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing biological variation and protein processing in primary human leukocytes by automated multiplex stable isotope labeling coupled to 2 dimensional peptide separation.
    Raijmakers R; Heck AJ; Mohammed S
    Mol Biosyst; 2009 Sep; 5(9):992-1003. PubMed ID: 19668865
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A study of reproducibility of guanidination-dimethylation labeling and liquid chromatography matrix-assisted laser desorption ionization mass spectrometry for relative proteome quantification.
    Ji C; Zhang N; Damaraju S; Damaraju VL; Carpenter P; Cass CE; Li L
    Anal Chim Acta; 2007 Mar; 585(2):219-26. PubMed ID: 17386668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.