BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35524126)

  • 1. High-Throughput Gene Mutagenesis Screening Using Base Editing.
    Després PC; Dubé AK; Yachie N; Landry CR
    Methods Mol Biol; 2022; 2477():331-348. PubMed ID: 35524126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs.
    Coelho MA; De Braekeleer E; Firth M; Bista M; Lukasiak S; Cuomo ME; Taylor BJM
    Nat Commun; 2020 Aug; 11(1):4132. PubMed ID: 32807781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbing proteomes at single residue resolution using base editing.
    Després PC; Dubé AK; Seki M; Yachie N; Landry CR
    Nat Commun; 2020 Apr; 11(1):1871. PubMed ID: 32313011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Single and Multiplex Base-Editing in
    Li Y; Ma S; Sun L; Zhang T; Chang J; Lu W; Chen X; Liu Y; Wang X; Shi R; Zhao P; Xia Q
    G3 (Bethesda); 2018 May; 8(5):1701-1709. PubMed ID: 29555822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.
    Paquet D; Kwart D; Chen A; Sproul A; Jacob S; Teo S; Olsen KM; Gregg A; Noggle S; Tessier-Lavigne M
    Nature; 2016 May; 533(7601):125-9. PubMed ID: 27120160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the
    Zhang S; Zhang R; Gao J; Gu T; Song G; Li W; Li D; Li Y; Li G
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes.
    Kumar R; Tiwari K; Saudagar P
    Methods Mol Biol; 2023; 2575():241-260. PubMed ID: 36301478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking.
    Chen X; Tasca F; Wang Q; Liu J; Janssen JM; Brescia MD; Bellin M; Szuhai K; Kenrick J; Frock RL; Gonçalves MAFV
    Nucleic Acids Res; 2020 Jan; 48(2):974-995. PubMed ID: 31799604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast.
    Després PC; Dubé AK; Nielly-Thibault L; Yachie N; Landry CR
    G3 (Bethesda); 2018 Oct; 8(10):3163-3171. PubMed ID: 30097473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention.
    Zhang Q; Xing HL; Wang ZP; Zhang HY; Yang F; Wang XC; Chen QJ
    Plant Mol Biol; 2018 Mar; 96(4-5):445-456. PubMed ID: 29476306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal Cardiac Gene Editing Using CRISPR/Cas9 With AAV9-Mediated Delivery of Short Guide RNAs Results in Mosaic Gene Disruption.
    Johansen AK; Molenaar B; Versteeg D; Leitoguinho AR; Demkes C; Spanjaard B; de Ruiter H; Akbari Moqadam F; Kooijman L; Zentilin L; Giacca M; van Rooij E
    Circ Res; 2017 Oct; 121(10):1168-1181. PubMed ID: 28851809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Targeted Gene Editing in Upland Cotton Using the CRISPR/Cas9 System.
    Zhu S; Yu X; Li Y; Sun Y; Zhu Q; Sun J
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30275376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient CRISPR/Cas9-based genome editing in carrot cells.
    Klimek-Chodacka M; Oleszkiewicz T; Lowder LG; Qi Y; Baranski R
    Plant Cell Rep; 2018 Apr; 37(4):575-586. PubMed ID: 29332168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Based Gene Dropout Screens.
    Wu K; Malek SN
    Methods Mol Biol; 2019; 1881():185-200. PubMed ID: 30350207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-Delivered CRISPR-Cas9 Ribonucleoproteins System for Gene-Editing Screening of Maize Protoplasts.
    Sant'Ana RRA; Caprestano CA; Nodari RO; Agapito-Tenfen SZ
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32887261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing.
    Newman A; Starrs L; Burgio G
    Bioessays; 2020 Sep; 42(9):e2000047. PubMed ID: 32643177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base Editing of Somatic Cells Using CRISPR-Cas9 in
    Marr E; Potter CJ
    CRISPR J; 2021 Dec; 4(6):836-845. PubMed ID: 34813372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and Efficient Gene Deletion by CRISPR/Cas9.
    Neldeborg S; Lin L; Stougaard M; Luo Y
    Methods Mol Biol; 2019; 1961():233-247. PubMed ID: 30912049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation.
    Fan D; Liu T; Li C; Jiao B; Li S; Hou Y; Luo K
    Sci Rep; 2015 Jul; 5():12217. PubMed ID: 26193631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.