BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 35524126)

  • 21. Genome Editing Using CRISPR/Cas9 System in the Rice Blast Fungus.
    Arazoe T
    Methods Mol Biol; 2021; 2356():149-160. PubMed ID: 34236684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes.
    Hess GT; Tycko J; Yao D; Bassik MC
    Mol Cell; 2017 Oct; 68(1):26-43. PubMed ID: 28985508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Design of Guide RNA for CRISPR/Cas Plant Genome Editing].
    Gerashchenkov GA; Rozhnova NA; Kuluev BR; Kiryanova OY; Gumerova GR; Knyazev AV; Vershinina ZR; Mikhailova EV; Chemeris DA; Matniyazov RT; Baimiev AK; Gubaidullin IM; Baimiev AK; Chemeris AV
    Mol Biol (Mosk); 2020; 54(1):29-50. PubMed ID: 32163387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger.
    Song L; Ouedraogo JP; Kolbusz M; Nguyen TTM; Tsang A
    PLoS One; 2018; 13(8):e0202868. PubMed ID: 30142205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei.
    Zou G; Zhou Z
    Methods Mol Biol; 2021; 2234():87-98. PubMed ID: 33165782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing.
    Xie K; Yang Y
    Methods Mol Biol; 2019; 1917():63-73. PubMed ID: 30610628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation and rational design of guide RNAs for efficient CRISPR/Cas9-mediated mutagenesis in Ciona.
    Gandhi S; Haeussler M; Razy-Krajka F; Christiaen L; Stolfi A
    Dev Biol; 2017 May; 425(1):8-20. PubMed ID: 28341547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes.
    Svitashev S; Schwartz C; Lenderts B; Young JK; Mark Cigan A
    Nat Commun; 2016 Nov; 7():13274. PubMed ID: 27848933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA.
    Smith LM; Ladner JT; Hodara VL; Parodi LM; Harris RA; Callery JE; Lai Z; Zou Y; Raveedran M; Rogers J; Giavedoni LD
    J Virol; 2021 Nov; 95(23):e0088221. PubMed ID: 34549979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Base editing the mammalian genome.
    Schatoff EM; Zafra MP; Dow LE
    Methods; 2019 Jul; 164-165():100-108. PubMed ID: 30836137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational guide RNA engineering for small-molecule control of CRISPR/Cas9 and gene editing.
    Liu X; Xiong W; Qi Q; Zhang Y; Ji H; Cui S; An J; Sun X; Yin H; Tian T; Zhou X
    Nucleic Acids Res; 2022 May; 50(8):4769-4783. PubMed ID: 35446403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.
    Zhu LJ; Holmes BR; Aronin N; Brodsky MH
    PLoS One; 2014; 9(9):e108424. PubMed ID: 25247697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facilitating gene editing in potato: a Single-Nucleotide Polymorphism (SNP) map of the Solanum tuberosum L. cv. Desiree genome.
    Sevestre F; Facon M; Wattebled F; Szydlowski N
    Sci Rep; 2020 Feb; 10(1):2045. PubMed ID: 32029861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique.
    Gasanov EV; Jędrychowska J; Pastor M; Wiweger M; Methner A; Korzh VP
    Mol Biol Rep; 2021 Feb; 48(2):1951-1957. PubMed ID: 33481178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant.
    Tran MTN; Khalid MKNM; Pébay A; Cook AL; Liang HH; Wong RCB; Craig JE; Liu GS; Hung SS; Hewitt AW
    Mol Vis; 2019; 25():174-182. PubMed ID: 30996586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.