BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35524438)

  • 1. Engineering Pseudomonas putida for improved utilization of syringyl aromatics.
    Mueller J; Willett H; Feist AM; Niu W
    Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440.
    Niu W; Willett H; Mueller J; He X; Kramer L; Ma B; Guo J
    Metab Eng; 2020 May; 59():151-161. PubMed ID: 32130971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid.
    Notonier S; Werner AZ; Kuatsjah E; Dumalo L; Abraham PE; Hatmaker EA; Hoyt CB; Amore A; Ramirez KJ; Woodworth SP; Klingeman DM; Giannone RJ; Guss AM; Hettich RL; Eltis LD; Johnson CW; Beckham GT
    Metab Eng; 2021 May; 65():111-122. PubMed ID: 33741529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of ARTP Mutation and Adaptive Laboratory Evolution to Reveal 1,4-Butanediol Degradation in Pseudomonas putida KT2440.
    Qian X; Xin K; Zhang L; Zhou J; Xu A; Dong W; Jiang M
    Microbiol Spectr; 2023 Jun; 11(3):e0498822. PubMed ID: 37067433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 6. Production of Substituted Styrene Bioproducts from Lignin and Lignocellulose Using Engineered Pseudomonas putida KT2440.
    Williamson JJ; Bahrin N; Hardiman EM; Bugg TDH
    Biotechnol J; 2020 Jul; 15(7):e1900571. PubMed ID: 32488970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological Valorization of Lignin-Derived Aromatics in Hydrolysate to Protocatechuic Acid by Engineered
    Jin X; Li X; Zou L; Zheng Z; Ouyang J
    Molecules; 2024 Mar; 29(7):. PubMed ID: 38611834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model.
    Bujdoš D; Popelářová B; Volke DC; Nikel PI; Sonnenschein N; Dvořák P
    Metab Eng; 2023 Jan; 75():29-46. PubMed ID: 36343876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2022; 52(1):80-88. PubMed ID: 33870868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida.
    Kohlstedt M; Starck S; Barton N; Stolzenberger J; Selzer M; Mehlmann K; Schneider R; Pleissner D; Rinkel J; Dickschat JS; Venus J; B J H van Duuren J; Wittmann C
    Metab Eng; 2018 May; 47():279-293. PubMed ID: 29548984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics.
    Li J; Yue C; Wei W; Shang Y; Zhang P; Ye BC
    Bioresour Technol; 2022 Jan; 344(Pt B):126221. PubMed ID: 34728357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications.
    Liang P; Zhang Y; Xu B; Zhao Y; Liu X; Gao W; Ma T; Yang C; Wang S; Liu R
    Microb Cell Fact; 2020 Mar; 19(1):70. PubMed ID: 32188438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics.
    Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E
    Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocatechuic acid production from lignin-associated phenolics.
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost.
    Ravi K; García-Hidalgo J; Gorwa-Grauslund MF; Lidén G
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5059-5070. PubMed ID: 28299400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Laboratory Evolution Restores Solvent Tolerance in Plasmid-Cured Pseudomonas putida S12: a Molecular Analysis.
    Kusumawardhani H; Furtwängler B; Blommestijn M; Kaltenytė A; van der Poel J; Kolk J; Hosseini R; de Winde JH
    Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33674430
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin.
    Salvachúa D; Rydzak T; Auwae R; De Capite A; Black BA; Bouvier JT; Cleveland NS; Elmore JR; Huenemann JD; Katahira R; Michener WE; Peterson DJ; Rohrer H; Vardon DR; Beckham GT; Guss AM
    Microb Biotechnol; 2020 Jan; 13(1):290-298. PubMed ID: 31468725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic metabolic pathway for the production of 1-alkenes from lignin-derived molecules.
    Luo J; Lehtinen T; Efimova E; Santala V; Santala S
    Microb Cell Fact; 2019 Mar; 18(1):48. PubMed ID: 30857542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory evolution reveals the metabolic and regulatory basis of ethylene glycol metabolism by Pseudomonas putida KT2440.
    Li WJ; Jayakody LN; Franden MA; Wehrmann M; Daun T; Hauer B; Blank LM; Beckham GT; Klebensberger J; Wierckx N
    Environ Microbiol; 2019 Oct; 21(10):3669-3682. PubMed ID: 31166064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.