These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35524582)

  • 1. Discovery of High-Performing Metal-Organic Frameworks for On-Board Methane Storage and Delivery via LNG-ANG Coupling: High-Throughput Screening, Machine Learning, and Experimental Validation.
    Kim SY; Han S; Lee S; Kang JH; Yoon S; Park W; Shin MW; Kim J; Chung YG; Bae YS
    Adv Sci (Weinh); 2022 Jul; 9(21):e2201559. PubMed ID: 35524582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning.
    Wang R; Zhong Y; Bi L; Yang M; Xu D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation.
    Altintas C; Altundal OF; Keskin S; Yildirim R
    J Chem Inf Model; 2021 May; 61(5):2131-2146. PubMed ID: 33914526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Natural Gas in Metal-Organic Frameworks: Selectivity, Cyclability, and Comparison to Methane Adsorption.
    Nath K; Wright KR; Ahmed A; Siegel DJ; Matzger AJ
    J Am Chem Soc; 2024 Apr; 146(15):10517-10523. PubMed ID: 38569048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico design of porous polymer networks: high-throughput screening for methane storage materials.
    Martin RL; Simon CM; Smit B; Haranczyk M
    J Am Chem Soc; 2014 Apr; 136(13):5006-22. PubMed ID: 24611543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting Metal-Organic Frameworks for Vinylidene Fluoride Adsorption: From Force Field Development, Computational Screening to Machine Learning.
    Palakkal AS; Yue Y; Mohamed SA; Jiang J
    Environ Sci Technol; 2024 Sep; 58(37):16465-16474. PubMed ID: 39219302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational prediction of high methane storage capacity in V-MOF-74.
    Hyeon S; Kim YC; Kim J
    Phys Chem Chem Phys; 2017 Aug; 19(31):21132-21139. PubMed ID: 28749516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Screening of Trillions of Metal-Organic Frameworks for High-Performance Methane Storage.
    Lee S; Kim B; Cho H; Lee H; Lee SY; Cho ES; Kim J
    ACS Appl Mater Interfaces; 2021 May; 13(20):23647-23654. PubMed ID: 33988362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Self-Evolutionary Methodology for Reverse Design of Novel MOFs.
    Yan T; Bi Z; Liu D; Zhang X; Lu G; Yang Q
    J Phys Chem A; 2022 Nov; 126(45):8476-8486. PubMed ID: 36343215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning potential for modelling H
    Liu S; Dupuis R; Fan D; Benzaria S; Bonneau M; Bhatt P; Eddaoudi M; Maurin G
    Chem Sci; 2024 Apr; 15(14):5294-5302. PubMed ID: 38577379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into hydrogen and methane storage capacities: Grand canonical Monte Carlo simulations of SIGSUA.
    Granja-DelRío A; Cabria I
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38634495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning insights into predicting biogas separation in metal-organic frameworks.
    Cooley I; Boobier S; Hirst JD; Besley E
    Commun Chem; 2024 May; 7(1):102. PubMed ID: 38720065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat and Mass Transfer in an Adsorbed Natural Gas Storage System Filled with Monolithic Carbon Adsorbent during Circulating Gas Charging.
    Strizhenov EM; Chugaev SS; Men'shchikov IE; Shkolin AV; Zherdev AA
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand Tailoring Strategy of a Metal-Organic Framework for Optimizing Methane Storage Working Capacities.
    Chen JR; Luo YQ; He S; Zhou HL; Huang XC
    Inorg Chem; 2022 Jul; 61(27):10417-10424. PubMed ID: 35767723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs).
    Pardakhti M; Moharreri E; Wanik D; Suib SL; Srivastava R
    ACS Comb Sci; 2017 Oct; 19(10):640-645. PubMed ID: 28800219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning Open Metal Site-Free
    Zhang ZH; Fang H; Xue DX; Bai J
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44956-44963. PubMed ID: 34498839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Evolution of High-Performing Metal Organic Frameworks for Methane Adsorption.
    Beauregard N; Pardakhti M; Srivastava R
    J Chem Inf Model; 2021 Jul; 61(7):3232-3239. PubMed ID: 34264660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of covalent organic frameworks for methane storage.
    Mendoza-Cortes JL; Pascal TA; Goddard WA
    J Phys Chem A; 2011 Dec; 115(47):13852-7. PubMed ID: 21992457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reticular Chemistry for Highly Porous Metal-Organic Frameworks: The Chemistry and Applications.
    Chen Z; Kirlikovali KO; Li P; Farha OK
    Acc Chem Res; 2022 Feb; 55(4):579-591. PubMed ID: 35112832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Low-Pressure Methane Adsorption Isotherms for Higher-Throughput Screening of Methane Storage Materials.
    Korman KJ; Decker GE; Dworzak MR; Deegan MM; Antonio AM; Taggart GA; Bloch ED
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40318-40327. PubMed ID: 32786240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.