These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35524638)

  • 41. 15% Efficiency Ultrathin Silicon Solar Cells with Fluorine-Doped Titanium Oxide and Chemically Tailored Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Asymmetric Heterocontact.
    He J; Hossain MA; Lin H; Wang W; Karuturi SK; Hoex B; Ye J; Gao P; Bullock J; Wan Y
    ACS Nano; 2019 Jun; 13(6):6356-6362. PubMed ID: 31017761
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of polysilicon in poly-Si/SiO
    Park H; Bae S; Park SJ; Hyun JY; Lee CH; Choi D; Kang D; Han H; Kang Y; Lee HS; Kim D
    RSC Adv; 2019 Jul; 9(40):23261-23266. PubMed ID: 35514484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In-Situ Fabrication of a Self-Aligned Selective Emitter Silicon Solar Cell Using the Gold Top Contacts To Facilitate the Synthesis of a Nanostructured Black Silicon Antireflective Layer Instead of an External Metal Nanoparticle Catalyst.
    Lu YT; Barron AR
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11802-14. PubMed ID: 25967127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-Promoted Electrostatic Adsorption of High-Density Lewis Base Monolayers as Passivating Electron-Selective Contacts.
    Yang X; Ying Z; Yang Z; Xu JR; Wang W; Wang J; Wang Z; Yao L; Yan B; Ye J
    Adv Sci (Weinh); 2021 Mar; 8(5):2003245. PubMed ID: 33717852
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells.
    Kou YS; Yang ST; Thiyagu S; Liu CT; Wu JW; Lin CF
    Nanoscale; 2016 Mar; 8(9):5379-85. PubMed ID: 26882957
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An 8.68% efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts.
    Yang L; Yu X; Hu W; Wu X; Zhao Y; Yang D
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4135-41. PubMed ID: 25642749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells.
    Wan Y; Samundsett C; Bullock J; Allen T; Hettick M; Yan D; Zheng P; Zhang X; Cui J; McKeon J; Javey A; Cuevas A
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14671-7. PubMed ID: 27219911
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of Crystallographic Orientation and Nanoscale Surface Morphology on Poly-Si/SiO
    Kale AS; Nemeth W; Guthrey H; Nanayakkara SU; LaSalvia V; Theingi S; Findley D; Page M; Al-Jassim M; Young DL; Stradins P; Agarwal S
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42021-42031. PubMed ID: 31610646
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.
    Köhler M; Pomaska M; Lentz F; Finger F; Rau U; Ding K
    ACS Appl Mater Interfaces; 2018 May; 10(17):14259-14263. PubMed ID: 29664611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrathin Ta
    Narangari PR; Karuturi SK; Wu Y; Wong-Leung J; Vora K; Lysevych M; Wan Y; Tan HH; Jagadish C; Mokkapati S
    Nanoscale; 2019 Apr; 11(15):7497-7505. PubMed ID: 30942202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Efficient Semitransparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems.
    Dewi HA; Wang H; Li J; Thway M; Sridharan R; Stangl R; Lin F; Aberle AG; Mathews N; Bruno A; Mhaisalkar S
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34178-34187. PubMed ID: 31442024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Light Management Enhancement for Four-Terminal Perovskite-Silicon Tandem Solar Cells: The Impact of the Optical Properties and Thickness of the Spacer Layer between Sub-Cells.
    Hajjiah A; Parmouneh F; Hadipour A; Jaysankar M; Aernouts T
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30562986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells.
    Um HD; Park KT; Jung JY; Li X; Zhou K; Jee SW; Lee JH
    Nanoscale; 2014 May; 6(10):5193-9. PubMed ID: 24733668
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Revealing Surface and Interface Evolution of Molybdenum Nitride as Carrier-Selective Contacts for Crystalline Silicon Solar Cells.
    Li Y; Li Y; Heger JE; Zhou J; Guan T; Everett CR; Wei W; Hong Z; Wu Y; Jiang X; Yin S; Yang X; Li D; Jiang C; Sun B; Müller-Buschbaum P
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13753-13760. PubMed ID: 36877864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Titanium Nitride Electron-Conductive Contact for Silicon Solar Cells By Radio Frequency Sputtering from a TiN Target.
    Yu J; Phang P; Samundsett C; Basnet R; Neupan GP; Yang X; Macdonald DH; Wan Y; Yan D; Ye J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26177-26183. PubMed ID: 32402191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon.
    Wu KH; Li CW
    Materials (Basel); 2015 Sep; 8(9):5922-5932. PubMed ID: 28793542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.
    He J; Gao P; Liao M; Yang X; Ying Z; Zhou S; Ye J; Cui Y
    ACS Nano; 2015 Jun; 9(6):6522-31. PubMed ID: 26047260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation.
    Zhang X; Yang D; Yang Z; Guo X; Liu B; Ren X; Liu SF
    Sci Rep; 2016 Oct; 6():35091. PubMed ID: 27725714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts.
    Shayan S; Matloub S; Rostami A
    Opt Express; 2021 Feb; 29(4):5068-5080. PubMed ID: 33726049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly efficient MoO
    Ramos FJ; Jutteau S; Posada J; Bercegol A; Rebai A; Guillemot T; Bodeux R; Schneider N; Loones N; Ory D; Broussillou C; Goaer G; Lombez L; Rousset J
    Sci Rep; 2018 Oct; 8(1):16139. PubMed ID: 30382171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.