These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35524785)

  • 1. Automated segmentation of whole-body CT images for body composition analysis in pediatric patients using a deep neural network.
    Lee SB; Cho YJ; Yoon SH; Lee YY; Kim SH; Lee S; Choi YH; Cheon JE
    Eur Radiol; 2022 Dec; 32(12):8463-8472. PubMed ID: 35524785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment.
    Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH
    Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully Automated, Semantic Segmentation of Whole-Body
    Shiyam Sundar LK; Yu J; Muzik O; Kulterer OC; Fueger B; Kifjak D; Nakuz T; Shin HM; Sima AK; Kitzmantl D; Badawi RD; Nardo L; Cherry SR; Spencer BA; Hacker M; Beyer T
    J Nucl Med; 2022 Dec; 63(12):1941-1948. PubMed ID: 35772962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Validation of a Deep Learning System for Segmentation of Abdominal Muscle and Fat on Computed Tomography.
    Park HJ; Shin Y; Park J; Kim H; Lee IS; Seo DW; Huh J; Lee TY; Park T; Lee J; Kim KW
    Korean J Radiol; 2020 Jan; 21(1):88-100. PubMed ID: 31920032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully Automated Segmentation of Connective Tissue Compartments for CT-Based Body Composition Analysis: A Deep Learning Approach.
    Nowak S; Faron A; Luetkens JA; Geißler HL; Praktiknjo M; Block W; Thomas D; Sprinkart AM
    Invest Radiol; 2020 Jun; 55(6):357-366. PubMed ID: 32369318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning method for localization and segmentation of abdominal CT.
    Dabiri S; Popuri K; Ma C; Chow V; Feliciano EMC; Caan BJ; Baracos VE; Beg MF
    Comput Med Imaging Graph; 2020 Oct; 85():101776. PubMed ID: 32862015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography.
    Ha J; Park T; Kim HK; Shin Y; Ko Y; Kim DW; Sung YS; Lee J; Ham SJ; Khang S; Jeong H; Koo K; Lee J; Kim KW
    Sci Rep; 2021 Nov; 11(1):21656. PubMed ID: 34737340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of deep learning networks for fully automated head and neck tumor delineation on multi-centric PET/CT images.
    Wang Y; Lombardo E; Huang L; Avanzo M; Fanetti G; Franchin G; Zschaeck S; Weingärtner J; Belka C; Riboldi M; Kurz C; Landry G
    Radiat Oncol; 2024 Jan; 19(1):3. PubMed ID: 38191431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Models for Abdominal CT Organ Segmentation in Children: Development and Validation in Internal and Heterogeneous Public Datasets.
    Somasundaram E; Taylor Z; Alves VV; Qiu L; Fortson BL; Mahalingam N; Dudley JA; Li H; Brady SL; Trout AT; Dillman JR
    AJR Am J Roentgenol; 2024 Jul; 223(1):e2430931. PubMed ID: 38691411
    [No Abstract]   [Full Text] [Related]  

  • 10. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation.
    Lee SB; Hong Y; Cho YJ; Jeong D; Lee J; Yoon SH; Lee S; Choi YH; Cheon JE
    Korean J Radiol; 2023 Apr; 24(4):294-304. PubMed ID: 36907592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic review of automated segmentation of 3D computed-tomography scans for volumetric body composition analysis.
    Mai DVC; Drami I; Pring ET; Gould LE; Lung P; Popuri K; Chow V; Beg MF; Athanasiou T; Jenkins JT;
    J Cachexia Sarcopenia Muscle; 2023 Oct; 14(5):1973-1986. PubMed ID: 37562946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pediatric body composition based on automatic segmentation of computed tomography scans: a pilot study.
    Samim A; Spijkers S; Moeskops P; Littooij AS; de Jong PA; Veldhuis WB; de Vos BD; van Santen HM; Nievelstein RAJ
    Pediatr Radiol; 2023 Nov; 53(12):2492-2501. PubMed ID: 37640800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training and validation of a deep learning U-net architecture general model for automated segmentation of inner ear from CT.
    Lim J; Abily A; Ben Salem D; Gaillandre L; Attye A; Ognard J
    Eur Radiol Exp; 2024 Sep; 8(1):104. PubMed ID: 39266784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of deep learning-based multiorgan segmentation methods on patient-specific internal dosimetry in PET/CT imaging: A comparative study.
    Karimipourfard M; Sina S; Mahani H; Alavi M; Yazdi M
    J Appl Clin Med Phys; 2024 Feb; 25(2):e14254. PubMed ID: 38214349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated body composition analysis of clinically acquired computed tomography scans using neural networks.
    Paris MT; Tandon P; Heyland DK; Furberg H; Premji T; Low G; Mourtzakis M
    Clin Nutr; 2020 Oct; 39(10):3049-3055. PubMed ID: 32007318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue segmentation of computed tomography images using a Random Forest algorithm: a feasibility study.
    Polan DF; Brady SL; Kaufman RA
    Phys Med Biol; 2016 Sep; 61(17):6553-69. PubMed ID: 27530679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concordance of Computed Tomography Regional Body Composition Analysis Using a Fully Automated Open-Source Neural Network versus a Reference Semi-Automated Program with Manual Correction.
    Gomez-Perez SL; Zhang Y; Byrne C; Wakefield C; Geesey T; Sclamberg J; Peterson S
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning.
    Weston AD; Korfiatis P; Kline TL; Philbrick KA; Kostandy P; Sakinis T; Sugimoto M; Takahashi N; Erickson BJ
    Radiology; 2019 Mar; 290(3):669-679. PubMed ID: 30526356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.