BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 35525038)

  • 1. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants.
    Roy S; Ahmaruzzaman M
    J Environ Manage; 2022 Aug; 315():115089. PubMed ID: 35525038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater.
    Barasarathi J; Abdullah PS; Uche EC
    Chemosphere; 2022 Oct; 305():135384. PubMed ID: 35724716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants.
    Selvasembian R; Gwenzi W; Chaukura N; Mthembu S
    J Hazard Mater; 2021 Sep; 417():125960. PubMed ID: 34229405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review.
    Adeola AO; Abiodun BA; Adenuga DO; Nomngongo PN
    J Contam Hydrol; 2022 Jun; 248():104019. PubMed ID: 35533435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive and photocatalytic degradation potential of porous polymeric materials for removal of pesticides, pharmaceuticals, and dyes-based emerging contaminants from water.
    Intisar A; Ramzan A; Hafeez S; Hussain N; Irfan M; Shakeel N; Gill KA; Iqbal A; Janczarek M; Jesionowski T
    Chemosphere; 2023 Sep; 336():139203. PubMed ID: 37315851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents.
    Srivastava V; Zare EN; Makvandi P; Zheng XQ; Iftekhar S; Wu A; Padil VVT; Mokhtari B; Varma RS; Tay FR; Sillanpaa M
    Chemosphere; 2020 Nov; 258():127324. PubMed ID: 32544812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment.
    Bhuyan A; Ahmaruzzaman M
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39377-39417. PubMed ID: 36752919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose-based materials and their adsorptive removal efficiency for dyes: A review.
    Kausar A; Zohra ST; Ijaz S; Iqbal M; Iqbal J; Bibi I; Nouren S; El Messaoudi N; Nazir A
    Int J Biol Macromol; 2023 Jan; 224():1337-1355. PubMed ID: 36309237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review.
    Vinayagam V; Murugan S; Kumaresan R; Narayanan M; Sillanpää M; Vo DN; Kushwaha OS
    Chemosphere; 2022 Aug; 301():134635. PubMed ID: 35447212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges.
    Nasir AM; Goh PS; Abdullah MS; Ng BC; Ismail AF
    Chemosphere; 2019 Oct; 232():96-112. PubMed ID: 31152909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review.
    Rajendran S; Priya AK; Senthil Kumar P; Hoang TKA; Sekar K; Chong KY; Khoo KS; Ng HS; Show PL
    Chemosphere; 2022 Sep; 303(Pt 2):135146. PubMed ID: 35636612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives.
    Sajjadi M; Ahmadpoor F; Nasrollahzadeh M; Ghafuri H
    Int J Biol Macromol; 2021 May; 178():394-423. PubMed ID: 33636266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric hydrogels-based materials for wastewater treatment.
    Ahmaruzzaman M; Roy P; Bonilla-Petriciolet A; Badawi M; Ganachari SV; Shetti NP; Aminabhavi TM
    Chemosphere; 2023 Aug; 331():138743. PubMed ID: 37105310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications.
    Xiao W; Sun R; Hu S; Meng C; Xie B; Yi M; Wu Y
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126984. PubMed ID: 37734528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants.
    Darabdhara J; Ahmaruzzaman M
    Chemosphere; 2022 Oct; 304():135261. PubMed ID: 35697109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of chitosan-based composites for environmental remediation: A review.
    Ahmed MA; Mohamed AA
    Int J Biol Macromol; 2023 Jul; 242(Pt 2):124787. PubMed ID: 37201888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on MXene-based nanomaterials as adsorbents in aqueous solution.
    Jeon M; Jun BM; Kim S; Jang M; Park CM; Snyder SA; Yoon Y
    Chemosphere; 2020 Dec; 261():127781. PubMed ID: 32731014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of zeolite based nanocomposites for wastewater remediation: Evaluating newer and environmentally benign approaches.
    Umejuru EC; Mashifana T; Kandjou V; Amani-Beni M; Sadeghifar H; Fayazi M; Karimi-Maleh H; Sithole NT
    Environ Res; 2023 Aug; 231(Pt 1):116073. PubMed ID: 37164282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review.
    Raval NP; Shah PU; Shah NK
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14810-53. PubMed ID: 27255316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of nickel(II) ions from aqueous environment: A review.
    Raval NP; Shah PU; Shah NK
    J Environ Manage; 2016 Sep; 179():1-20. PubMed ID: 27149285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.