BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35525445)

  • 21. Mixture toxicity and uptake of 1-butyl-3-methylimidazolium bromide and cadmium co-contaminants in water by perennial ryegrass (Lolium perenne L.).
    Hu Y; Habibul N; Hu YY; Meng FL; Zhang X; Sheng GP
    J Hazard Mater; 2020 Mar; 386():121972. PubMed ID: 31887564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilized Nanoscale Zerovalent Iron Mediated Cadmium Accumulation and Oxidative Damage of Boehmeria nivea (L.) Gaudich Cultivated in Cadmium Contaminated Sediments.
    Gong X; Huang D; Liu Y; Zeng G; Wang R; Wan J; Zhang C; Cheng M; Qin X; Xue W
    Environ Sci Technol; 2017 Oct; 51(19):11308-11316. PubMed ID: 28850225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unraveling the effects of arbuscular mycorrhizal fungi on cadmium uptake and detoxification mechanisms in perennial ryegrass (Lolium perenne).
    Han Y; Zveushe OK; Dong F; Ling Q; Chen Y; Sajid S; Zhou L; Resco de Dios V
    Sci Total Environ; 2021 Dec; 798():149222. PubMed ID: 34375244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nano-scale zero valent iron modulates Fe/Cd transporters and immobilizes soil Cd for production of Cd free rice.
    Guha T; Barman S; Mukherjee A; Kundu R
    Chemosphere; 2020 Dec; 260():127533. PubMed ID: 32679374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis).
    Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A
    Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of two different biochars on remediation of Cd-contaminated soil and Cd uptake by Lolium perenne.
    Li L; Jia Z; Ma H; Bao W; Li X; Tan H; Xu F; Xu H; Li Y
    Environ Geochem Health; 2019 Oct; 41(5):2067-2080. PubMed ID: 30810981
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.).
    Sarathchandra SS; Rengel Z; Solaiman ZM
    Chemosphere; 2022 Feb; 288(Pt 2):132573. PubMed ID: 34673039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antagonistic effect of polystyrene nanoplastics on cadmium toxicity to maize (Zea mays L.).
    Wang L; Lin B; Wu L; Pan P; Liu B; Li R
    Chemosphere; 2022 Nov; 307(Pt 1):135714. PubMed ID: 35842040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Phytoextraction for Co-contaminated Soil with Cd and Pb by Ryegrass (Lolium perenne L.).
    Zhang Y; Li F; Xu W; Ren J; Chen S; Shen K; Long Z
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):147-154. PubMed ID: 31250070
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Core-shell structural nitrogen-doped carbon foam loaded with nano zero-valent iron for simultaneous remediation of Cd (II) and NAP in water and soil: Kinetics, mechanism, and environmental evaluation.
    Li C; Sun X; Zhu Y; Liang W; Nie Y; Shi W; Ai S
    Sci Total Environ; 2022 Aug; 832():155091. PubMed ID: 35398127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms.
    Liu K; Li F; Cui J; Yang S; Fang L
    J Hazard Mater; 2020 Aug; 395():122623. PubMed ID: 32353819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Physiological Responses of Ryegrass in Cadmium-Nonylphenol Co-contaminated Water and the Phytoremediation Effects].
    Shi GY; Li ZY; Zhang L; Cheng YY; Chen HW; Shi WL
    Huan Jing Ke Xue; 2018 Oct; 39(10):4512-4518. PubMed ID: 30229598
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Remediation of Cd-Contaminated Soil by Modified Nanoscale Zero-Valent Iron: Role of Plant Root Exudates and Inner Mechanisms.
    Huang D; Yang Y; Deng R; Gong X; Zhou W; Chen S; Li B; Wang G
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34070880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.
    Su Y; Adeleye AS; Keller AA; Huang Y; Dai C; Zhou X; Zhang Y
    Water Res; 2015 May; 74():47-57. PubMed ID: 25706223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification-bioremediation of copper, lead, and cadmium-contaminated soil by combined ryegrass (Lolium multiflorum Lam.) and Pseudomonas aeruginosa treatment.
    Shi GY; Yan YJ; Yu ZQ; Zhang L; Cheng YY; Shi WL
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37668-37676. PubMed ID: 32608000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinctive adsorption and desorption behaviors of temporal and post-treatment heavy metals by iron nanoparticles in the presence of microplastics.
    Ren S; Luo Z; Pan Y; Ling C; Yu L; Yin K
    Sci Total Environ; 2023 Jun; 878():163141. PubMed ID: 36990234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd
    Tarekegn MM; Hiruy AM; Dekebo AH
    RSC Adv; 2021 May; 11(30):18539-18551. PubMed ID: 35480950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of various microplastics on PBDEs contaminated soil remediation by nZVI and sulfide-nZVI: Impedance, electron-accepting/-donating capacity and aging.
    Zhang X; Chen R; Li Z; Yu J; Chen J; Zhang Y; Chen J; Yu Q; Qiu X
    Sci Total Environ; 2023 Jul; 880():163233. PubMed ID: 37019223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase transformation of nanosized zero-valent iron modulated by As(III) determines heavy metal passivation.
    Hao T; Liu K; Gao B; Hocking R; Fang L
    Water Res; 2022 Aug; 221():118804. PubMed ID: 35797817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response.
    Mokarram-Kashtiban S; Hosseini SM; Tabari Kouchaksaraei M; Younesi H
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10776-10789. PubMed ID: 30778927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.