These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 35525457)
1. Nanocellulose-based sensing platforms for heavy metal ions detection: A comprehensive review. Langari MM; Antxustegi MM; Labidi J Chemosphere; 2022 Sep; 302():134823. PubMed ID: 35525457 [TBL] [Abstract][Full Text] [Related]
2. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Bansod B; Kumar T; Thakur R; Rana S; Singh I Biosens Bioelectron; 2017 Aug; 94():443-455. PubMed ID: 28340464 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical and Colorimetric Nanosensors for Detection of Heavy Metal Ions: A Review. Fakayode SO; Walgama C; Fernand Narcisse VE; Grant C Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005468 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence Sensing Mechanisms of Versatile Graphene Quantum Dots toward Commonly Encountered Heavy Metal Ions. Lai S; Jin Y; Shi L; Zhou R; Li Y ACS Sens; 2023 Oct; 8(10):3812-3823. PubMed ID: 37737841 [TBL] [Abstract][Full Text] [Related]
6. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Li B; Xie X; Meng T; Guo X; Li Q; Yang Y; Jin H; Jin C; Meng X; Pang H Food Chem; 2024 May; 440():138213. PubMed ID: 38134834 [TBL] [Abstract][Full Text] [Related]
7. Bifunctional fluoroionphore-ionic liquid hybrid for toxic heavy metal ions: improving its performance via the synergistic extraction strategy. Jin Z; Xie DX; Zhang XB; Gong YJ; Tan W Anal Chem; 2012 May; 84(10):4253-7. PubMed ID: 22530693 [TBL] [Abstract][Full Text] [Related]
8. Stripping voltammetric measurement of trace metal ions using screen-printed carbon and modified carbon paste electrodes on river water from the Eerste-Kuils River System. Somerset VS; Hernandez LH; Iwuoha EI J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):17-32. PubMed ID: 21104492 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous sensing of copper, lead, cadmium and mercury traces in human blood serum using orthorhombic phase aluminium ferrite. Durai L; Badhulika S Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110865. PubMed ID: 32409035 [TBL] [Abstract][Full Text] [Related]
10. Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. Shafqat SS; Rizwan M; Batool M; Shafqat SR; Mustafa G; Rasheed T; Zafar MN Chemosphere; 2023 Mar; 318():137920. PubMed ID: 36690256 [TBL] [Abstract][Full Text] [Related]
11. Enrichment and immobilization of heavy metal ions from wastewater by nanocellulose/carbon dots-derived composite. You XY; Yin WM; Wang Y; Wang C; Zheng WX; Guo YR; Li S; Pan QJ Int J Biol Macromol; 2024 Jan; 255():128274. PubMed ID: 37989432 [TBL] [Abstract][Full Text] [Related]
12. Electric field-enabled aptasensing interfacial engineering to simultaneously enhance specific preconcentration and electrochemical detection of mercury and lead ions. Liu C; Wang Y; Li Y; Meng S; Li W; Liu D; You T Sci Total Environ; 2023 Nov; 900():166407. PubMed ID: 37597549 [TBL] [Abstract][Full Text] [Related]
13. In-situ synthesized ZIF-67 graphene oxide (ZIF-67/GO) nanocomposite for efficient individual and simultaneous detection of heavy metal ions. Ghafoor M; Khan ZU; Nawaz MH; Akhtar N; Rahim A; Riaz S Environ Monit Assess; 2023 Feb; 195(3):423. PubMed ID: 36813857 [TBL] [Abstract][Full Text] [Related]
14. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. Reshmy R; Philip E; Madhavan A; Pugazhendhi A; Sindhu R; Sirohi R; Awasthi MK; Pandey A; Binod P J Hazard Mater; 2022 Feb; 424(Pt B):127516. PubMed ID: 34689089 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review. Sulthana SF; Iqbal UM; Suseela SB; Anbazhagan R; Chinthaginjala R; Chitathuru D; Ahmad I; Kim TH ACS Omega; 2024 Jun; 9(24):25493-25512. PubMed ID: 38911761 [TBL] [Abstract][Full Text] [Related]
16. Progress in Electrochemical Sensing of Heavy Metals Based on Amino Acids and Its Composites. Tang LW; Alias Y; Zakaria R; Woi PM Crit Rev Anal Chem; 2023; 53(4):869-886. PubMed ID: 34672838 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical detection of heavy metal ions in water. Ding Q; Li C; Wang H; Xu C; Kuang H Chem Commun (Camb); 2021 Jul; 57(59):7215-7231. PubMed ID: 34223844 [TBL] [Abstract][Full Text] [Related]
18. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Garg N; Deep A; Sharma AL Crit Rev Anal Chem; 2024 Aug; 54(5):1121-1145. PubMed ID: 35968634 [TBL] [Abstract][Full Text] [Related]
19. A new thiacalix[4]arene-based metal-organic framework as an efficient electrochemical sensor for trace detection of Cd Ma L; Pei WY; Yang J; Ma JF Food Chem; 2024 May; 441():138352. PubMed ID: 38199098 [TBL] [Abstract][Full Text] [Related]
20. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting. Yao XZ; Guo Z; Yuan QH; Liu ZG; Liu JH; Huang XJ ACS Appl Mater Interfaces; 2014 Aug; 6(15):12203-13. PubMed ID: 25014119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]