These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35525549)

  • 1. Computational tools and resources for pseudokinase research.
    O'Boyle B; Shrestha S; Kochut K; Eyers PA; Kannan N
    Methods Enzymol; 2022; 667():403-426. PubMed ID: 35525549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracing the origin and evolution of pseudokinases across the tree of life.
    Kwon A; Scott S; Taujale R; Yeung W; Kochut KJ; Eyers PA; Kannan N
    Sci Signal; 2019 Apr; 12(578):. PubMed ID: 31015289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KinView: a visual comparative sequence analysis tool for integrated kinome research.
    McSkimming DI; Dastgheib S; Baffi TR; Byrne DP; Ferries S; Scott ST; Newton AC; Eyers CE; Kochut KJ; Eyers PA; Kannan N
    Mol Biosyst; 2016 Nov; 12(12):3651-3665. PubMed ID: 27731453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights.
    Paul A; Srinivasan N
    Proteins; 2020 Dec; 88(12):1620-1638. PubMed ID: 32667690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles.
    Paul A; Subhadarshini S; Srinivasan N
    Proteins; 2022 Mar; 90(3):747-764. PubMed ID: 34708889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KinOrtho: a method for mapping human kinase orthologs across the tree of life and illuminating understudied kinases.
    Huang LC; Taujale R; Gravel N; Venkat A; Yeung W; Byrne DP; Eyers PA; Kannan N
    BMC Bioinformatics; 2021 Sep; 22(1):446. PubMed ID: 34537014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProKinO: a unified resource for mining the cancer kinome.
    McSkimming DI; Dastgheib S; Talevich E; Narayanan A; Katiyar S; Taylor SS; Kochut K; Kannan N
    Hum Mutat; 2015 Feb; 36(2):175-86. PubMed ID: 25382819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ProKinO: an ontology for integrative analysis of protein kinases in cancer.
    Gosal G; Kochut KJ; Kannan N
    PLoS One; 2011; 6(12):e28782. PubMed ID: 22194913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cataloguing the dead: breathing new life into pseudokinase research.
    Shrestha S; Byrne DP; Harris JA; Kannan N; Eyers PA
    FEBS J; 2020 Oct; 287(19):4150-4169. PubMed ID: 32053275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark kinase annotation, mining, and visualization using the Protein Kinase Ontology.
    Soleymani S; Gravel N; Huang LC; Yeung W; Bozorgi E; Bendzunas NG; Kochut KJ; Kannan N
    PeerJ; 2023; 11():e16087. PubMed ID: 38077442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the evolutionary conservation of the sole PIKK pseudokinase Tra1/TRRAP.
    Elías-Villalobos A; Fort P; Helmlinger D
    Biochem Soc Trans; 2019 Dec; 47(6):1597-1608. PubMed ID: 31769470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pickup in pseudokinase activity.
    Dar AC
    Biochem Soc Trans; 2013 Aug; 41(4):987-94. PubMed ID: 23863168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric protein kinase regulation by pseudokinases: insights from STRAD.
    Rajakulendran T; Sicheri F
    Sci Signal; 2010 Mar; 3(111):pe8. PubMed ID: 20197543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors.
    Talevich E; Kannan N
    BMC Evol Biol; 2013 Jun; 13():117. PubMed ID: 23742205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for discovering catalytic activities for pseudokinases.
    Black MH; Gradowski M; Pawłowski K; Tagliabracci VS
    Methods Enzymol; 2022; 667():575-610. PubMed ID: 35525554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of pseudokinase PEAK1 (Sugen kinase 269) reveals an unusual catalytic cleft and a novel mode of kinase fold dimerization.
    Ha BH; Boggon TJ
    J Biol Chem; 2018 Feb; 293(5):1642-1650. PubMed ID: 29212708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal coordination in kinases and pseudokinases.
    Knape MJ; Herberg FW
    Biochem Soc Trans; 2017 Jun; 45(3):653-663. PubMed ID: 28620027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.