These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35525664)
1. Nonadiabatic instanton rate theory beyond the golden-rule limit. Trenins G; Richardson JO J Chem Phys; 2022 May; 156(17):174115. PubMed ID: 35525664 [TBL] [Abstract][Full Text] [Related]
2. Instanton theory for Fermi's golden rule and beyond. Ansari IM; Heller ER; Trenins G; Richardson JO Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200378. PubMed ID: 35341312 [TBL] [Abstract][Full Text] [Related]
3. Semiclassical Green's functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit. Richardson JO; Bauer R; Thoss M J Chem Phys; 2015 Oct; 143(13):134115. PubMed ID: 26450300 [TBL] [Abstract][Full Text] [Related]
4. Nonadiabatic quantum transition-state theory in the golden-rule limit. II. Overcoming the pitfalls of the saddle-point and semiclassical approximations. Fang W; Thapa MJ; Richardson JO J Chem Phys; 2019 Dec; 151(21):214101. PubMed ID: 31822067 [TBL] [Abstract][Full Text] [Related]
5. Instanton formulation of Fermi's golden rule in the Marcus inverted regime. Heller ER; Richardson JO J Chem Phys; 2020 Jan; 152(3):034106. PubMed ID: 31968950 [TBL] [Abstract][Full Text] [Related]
7. Ring-polymer instanton theory of electron transfer in the nonadiabatic limit. Richardson JO J Chem Phys; 2015 Oct; 143(13):134116. PubMed ID: 26450301 [TBL] [Abstract][Full Text] [Related]
8. Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems. Thapa MJ; Fang W; Richardson JO J Chem Phys; 2019 Mar; 150(10):104107. PubMed ID: 30876356 [TBL] [Abstract][Full Text] [Related]
9. Effects of tunnelling and asymmetry for system-bath models of electron transfer. Mattiat J; Richardson JO J Chem Phys; 2018 Mar; 148(10):102311. PubMed ID: 29544261 [TBL] [Abstract][Full Text] [Related]
10. Calculation of electron transfer rates using mixed quantum classical approaches: nonadiabatic limit and beyond. Xie W; Bai S; Zhu L; Shi Q J Phys Chem A; 2013 Jul; 117(29):6196-204. PubMed ID: 23534444 [TBL] [Abstract][Full Text] [Related]
11. Semiclassical analysis of the quantum instanton approximation. Vaillant CL; Thapa MJ; Vaníček J; Richardson JO J Chem Phys; 2019 Oct; 151(14):144111. PubMed ID: 31615229 [TBL] [Abstract][Full Text] [Related]
12. A personal perspective of the present status and future challenges facing thermal reaction rate theory. Pollak E J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38639316 [TBL] [Abstract][Full Text] [Related]
16. A justification for a nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation of the time evolution operator. Wu Y; Herman MF J Chem Phys; 2006 Oct; 125(15):154116. PubMed ID: 17059248 [TBL] [Abstract][Full Text] [Related]
18. Nonequilibrium Fermi's Golden Rule Charge Transfer Rates via the Linearized Semiclassical Method. Sun X; Geva E J Chem Theory Comput; 2016 Jun; 12(6):2926-41. PubMed ID: 27128887 [TBL] [Abstract][Full Text] [Related]
19. A general non-adiabatic quantum instanton approximation. Lawrence JE; Manolopoulos DE J Chem Phys; 2020 May; 152(20):204117. PubMed ID: 32486674 [TBL] [Abstract][Full Text] [Related]
20. Cavity-modified Fermi's golden rule rate constants: Beyond the single mode approximation. Saller MAC; Lai Y; Geva E J Chem Phys; 2023 Oct; 159(15):. PubMed ID: 37861118 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]