These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35525672)

  • 1. Complex analysis of divergent perturbation theory at finite temperature.
    Sun Y; Burton HGA
    J Chem Phys; 2022 May; 156(17):171101. PubMed ID: 35525672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles.
    Hirata S
    J Chem Phys; 2021 Sep; 155(9):094106. PubMed ID: 34496596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-temperature many-body perturbation theory in the canonical ensemble.
    Jha PK; Hirata S
    Phys Rev E; 2020 Feb; 101(2-1):022106. PubMed ID: 32168663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeros of partition functions in the NPT ensemble.
    Aslyamov T; Akhatov I
    Phys Rev E; 2019 Nov; 100(5-1):052118. PubMed ID: 31869982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation theory in the complex plane: exceptional points and where to find them.
    Marie A; Burton HGA; Loos PF
    J Phys Condens Matter; 2021 Jun; 33(28):. PubMed ID: 33601362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partition function zeros and finite size scaling for polymer adsorption.
    Taylor MP; Luettmer-Strathmann J
    J Chem Phys; 2014 Nov; 141(20):204906. PubMed ID: 25429961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zero-temperature phase transitions and their anomalous influence on thermodynamic behavior in the q-state Potts model on a diamond chain.
    Panov Y; Rojas O
    Phys Rev E; 2023 Oct; 108(4-1):044144. PubMed ID: 37978719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-temperature many-body perturbation theory in the grand canonical ensemble.
    Hirata S; Jha PK
    J Chem Phys; 2020 Jul; 153(1):014103. PubMed ID: 32640814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Singularities of the canonical partition functions of fluid systems with continuous interaction potentials.
    Wang XZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056102. PubMed ID: 12513551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-order phase transitions from poles in asymptotic representations of partition functions.
    Touchette H; Harris RJ; Tailleur J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):030101. PubMed ID: 20365681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic chemical response indexes at finite temperature in the canonical ensemble.
    Franco-Pérez M; Gázquez JL; Vela A
    J Chem Phys; 2015 Jul; 143(2):024112. PubMed ID: 26178095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logarithmic finite-size scaling correction to the leading Fisher zeros in the p-state clock model: A higher-order tensor renormalization group study.
    Hong S; Kim DH
    Phys Rev E; 2020 Jan; 101(1-1):012124. PubMed ID: 32069608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partition function zeros of the p-state clock model in the complex temperature plane.
    Kim DH
    Phys Rev E; 2017 Nov; 96(5-1):052130. PubMed ID: 29347725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonzero-temperature entanglement negativity of quantum spin models: Area law, linked cluster expansions, and sudden death.
    Sherman NE; Devakul T; Hastings MB; Singh RR
    Phys Rev E; 2016 Feb; 93(2):022128. PubMed ID: 26986309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster perturbation theory. IV. Convergence of cluster perturbation series for energies and molecular properties.
    Pawłowski F; Olsen J; Jørgensen P
    J Chem Phys; 2019 Apr; 150(13):134111. PubMed ID: 30954043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying transitions in finite systems by means of partition function zeros and microcanonical inflection-point analysis: a comparison for elastic flexible polymers.
    Rocha JC; Schnabel S; Landau DP; Bachmann M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022601. PubMed ID: 25215750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lee-Yang zeros and large-deviation statistics of a molecular zipper.
    Deger A; Brandner K; Flindt C
    Phys Rev E; 2018 Jan; 97(1-1):012115. PubMed ID: 29448488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partition function zeros and phase transitions for a square-well polymer chain.
    Taylor MP; Aung PP; Paul W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012604. PubMed ID: 23944483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Justification for the Parabolic Model for Reactivity Indicators with Respect to Electron Number and a Rigorous Definition for the Electrophilicity: The Essential Role Played by the Electronic Entropy.
    Franco-Pérez M; Gázquez JL; Ayers PW; Vela A
    J Chem Theory Comput; 2018 Feb; 14(2):597-606. PubMed ID: 29268007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum correlations in spin chains at finite temperatures and quantum phase transitions.
    Werlang T; Trippe C; Ribeiro GA; Rigolin G
    Phys Rev Lett; 2010 Aug; 105(9):095702. PubMed ID: 20868176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.