These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35525731)

  • 21. Biodegradable Iron and Porous Iron: Mechanical Properties, Degradation Behaviour, Manufacturing Routes and Biomedical Applications.
    Salama M; Vaz MF; Colaço R; Santos C; Carmezim M
    J Funct Biomater; 2022 Jun; 13(2):. PubMed ID: 35735927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Kim HW; Knowles JC; Kim HE
    Biomaterials; 2004; 25(7-8):1279-87. PubMed ID: 14643602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds.
    Wang Y; Huang H; Jia G; Zeng H; Yuan G
    Acta Biomater; 2021 Nov; 135():705-722. PubMed ID: 34469790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing.
    Chou DT; Wells D; Hong D; Lee B; Kuhn H; Kumta PN
    Acta Biomater; 2013 Nov; 9(10):8593-603. PubMed ID: 23624222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen Coating Effects on Fe-Mn Bioresorbable Alloys.
    Huang S; Ulloa A; Nauman E; Stanciu L
    J Orthop Res; 2020 Mar; 38(3):523-535. PubMed ID: 31608487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Corrosion fatigue behavior of additively manufactured biodegradable porous zinc.
    Li Y; Li W; Bobbert FSL; Lietaert K; Dong JH; Leeflang MA; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Apr; 106():439-449. PubMed ID: 32036018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical behavior, biocompatibility and mechanical performance of biodegradable iron with PEI coating.
    Gorejová R; Oriňaková R; Macko J; Oriňak A; Kupková M; Hrubovčáková M; Džupon M; Sopčák T; Ševc J; Maskaľová I; Džunda R
    J Biomed Mater Res A; 2022 Mar; 110(3):659-671. PubMed ID: 34595831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multifunctional Properties of Quercitrin-Coated Porous Ti-6Al-4V Implants for Orthopaedic Applications Assessed In Vitro.
    Llopis-Grimalt MA; Arbós A; Gil-Mir M; Mosur A; Kulkarni P; Salito A; Ramis JM; Monjo M
    J Clin Med; 2020 Mar; 9(3):. PubMed ID: 32245053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancellous-Bone-like Porous Iron Scaffold Coated with Strontium Incorporated Octacalcium Phosphate Nanowhiskers for Bone Regeneration.
    He J; Ye H; Li Y; Fang J; Mei Q; Lu X; Ren F
    ACS Biomater Sci Eng; 2019 Feb; 5(2):509-518. PubMed ID: 33405815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermosensitive Hydrogel Based on Poly(2-Ethyl-2-Oxazoline)-Poly(D,L-Lactide)-Poly(2-Ethyl-2-Oxazoline) for Sustained Salmon Calcitonin Delivery.
    Wang X; Wang Y; Yan M; Liang X; Zhao N; Ma Y; Gao Y
    AAPS PharmSciTech; 2020 Jan; 21(2):71. PubMed ID: 31953574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.
    Wang J; He Y; Maitz MF; Collins B; Xiong K; Guo L; Yun Y; Wan G; Huang N
    Acta Biomater; 2013 Nov; 9(10):8678-89. PubMed ID: 23467041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model.
    Novy Z; Lobaz V; Vlk M; Kozempel J; Stepanek P; Popper M; Vrbkova J; Hajduch M; Hruby M; Petrik M
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology.
    Sharma P; Pandey PM
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109776. PubMed ID: 31349532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
    Hong D; Chou DT; Velikokhatnyi OI; Roy A; Lee B; Swink I; Issaev I; Kuhn HA; Kumta PN
    Acta Biomater; 2016 Nov; 45():375-386. PubMed ID: 27562611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces.
    MacBarb RF; Lindsey DP; Bahney CS; Woods SA; Wolfe ML; Yerby SA
    Int J Spine Surg; 2017; 11(3):15. PubMed ID: 28765799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants.
    Ahn H; Patel RR; Hoyt AJ; Lin ASP; Torstrick FB; Guldberg RE; Frick CP; Carpenter RD; Yakacki CM; Willett NJ
    Acta Biomater; 2018 May; 72():352-361. PubMed ID: 29563069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds.
    Zhao L; Wu C; Lin K; Chang J
    Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of poly (ε-caprolactone) coating on the properties of three-dimensional printed porous structures.
    Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Clarke SA; Dunne N
    J Mech Behav Biomed Mater; 2017 Jun; 70():68-83. PubMed ID: 27233445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.
    Cui Z; Lin L; Si J; Luo Y; Wang Q; Lin Y; Wang X; Chen W
    J Biomater Sci Polym Ed; 2017 Jun; 28(9):826-845. PubMed ID: 28278041
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of poly(2-methyl-2-oxazoline) in protein separation by capillary electrophoresis].
    Wang Y; Wang Y
    Se Pu; 2020 Sep; 38(9):1022-1027. PubMed ID: 34213268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.