BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35525751)

  • 1. Mineralized self-assembled silk fibroin/cellulose interpenetrating network aerogel for bone tissue engineering.
    Chen ZJ; Zhang Y; Zheng L; Zhang H; Shi HH; Zhang XC; Liu B
    Biomater Adv; 2022 Mar; 134():112549. PubMed ID: 35525751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new cancellous bone material of silk fibroin/cellulose dual network composite aerogel reinforced by nano-hydroxyapatite filler.
    Chen ZJ; Shi HH; Zheng L; Zhang H; Cha YY; Ruan HX; Zhang Y; Zhang XC
    Int J Biol Macromol; 2021 Jul; 182():286-297. PubMed ID: 33838188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold with Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration.
    Maleki H; Shahbazi MA; Montes S; Hosseini SH; Eskandari MR; Zaunschirm S; Verwanger T; Mathur S; Milow B; Krammer B; Hüsing N
    ACS Appl Mater Interfaces; 2019 May; 11(19):17256-17269. PubMed ID: 31013056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Silk Fibroin/Cellulose Hydrogels for Bone Tissue Engineering via a Novel Combined Process Based on Sequential Regeneration and Porogen Leaching.
    Burger D; Beaumont M; Rosenau T; Tamada Y
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33153040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering.
    Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y
    Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN; Panda NN; Mund R; Pramanik K
    Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering.
    Singh BN; Pramanik K
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):2011-2034. PubMed ID: 30209974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonmineralized and Mineralized Silk Fibroin/Gelatin Hybrid Scaffolds: Chacterization and Cytocompatibility In Vitro for Bone-Tissue Engineering.
    Meng X; Gong K; Sun C; Liu D; Du P; Xu D
    J Craniofac Surg; 2020; 31(2):416-419. PubMed ID: 31764552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.
    Luo J; Zhang H; Zhu J; Cui X; Gao J; Wang X; Xiong J
    Colloids Surf B Biointerfaces; 2018 Mar; 163():369-378. PubMed ID: 29335199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():783-792. PubMed ID: 28629081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering.
    Wang Q; Chu Y; He J; Shao W; Zhou Y; Qi K; Wang L; Cui S
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():232-242. PubMed ID: 28866161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering.
    Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L
    J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering.
    Du X; Wei D; Huang L; Zhu M; Zhang Y; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109731. PubMed ID: 31349472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentric-mineralized hybrid silk-based scaffolds for bone tissue engineering
    Bosio VE; Rybner C; Kaplan DL
    J Mater Chem B; 2023 Aug; 11(33):7998-8006. PubMed ID: 37526619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.