These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35525799)

  • 21. Developing future heat-resilient vegetable crops.
    Saeed F; Chaudhry UK; Raza A; Charagh S; Bakhsh A; Bohra A; Ali S; Chitikineni A; Saeed Y; Visser RGF; Siddique KHM; Varshney RK
    Funct Integr Genomics; 2023 Jan; 23(1):47. PubMed ID: 36692535
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liming impacts on soils, crops and biodiversity in the UK: A review.
    Holland JE; Bennett AE; Newton AC; White PJ; McKenzie BM; George TS; Pakeman RJ; Bailey JS; Fornara DA; Hayes RC
    Sci Total Environ; 2018 Jan; 610-611():316-332. PubMed ID: 28806549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Future-proof crops: challenges and strategies for climate resilience improvement.
    Kissoudis C; van de Wiel C; Visser RG; van der Linden G
    Curr Opin Plant Biol; 2016 Apr; 30():47-56. PubMed ID: 26874966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One crop breeding cycle from starvation? How engineering crop photosynthesis for rising CO2 and temperature could be one important route to alleviation.
    Kromdijk J; Long SP
    Proc Biol Sci; 2016 Mar; 283(1826):20152578. PubMed ID: 26962136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring natural selection to guide breeding for agriculture.
    Henry RJ; Nevo E
    Plant Biotechnol J; 2014 Aug; 12(6):655-62. PubMed ID: 24975385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits.
    Sinha P; Singh VK; Bohra A; Kumar A; Reif JC; Varshney RK
    Theor Appl Genet; 2021 Jun; 134(6):1829-1843. PubMed ID: 34014373
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parsimonious root systems and better root distribution can improve biomass production and yield of soybean.
    Noh E; Fallen B; Payero J; Narayanan S
    PLoS One; 2022; 17(6):e0270109. PubMed ID: 35737677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hotter, drier, CRISPR: the latest edit on climate change.
    Massel K; Lam Y; Wong ACS; Hickey LT; Borrell AK; Godwin ID
    Theor Appl Genet; 2021 Jun; 134(6):1691-1709. PubMed ID: 33420514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Features and applications of haplotypes in crop breeding.
    Bhat JA; Yu D; Bohra A; Ganie SA; Varshney RK
    Commun Biol; 2021 Nov; 4(1):1266. PubMed ID: 34737387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil and human health: Understanding agricultural and socio-environmental risk and resilience in the age of climate change.
    Faye JB; Braun YA
    Health Place; 2022 Sep; 77():102799. PubMed ID: 35422399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate change challenges plant breeding.
    Xiong W; Reynolds M; Xu Y
    Curr Opin Plant Biol; 2022 Dec; 70():102308. PubMed ID: 36279790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture.
    Lynch JP
    Plant Cell Environ; 2015 Sep; 38(9):1775-84. PubMed ID: 25255708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetic approaches to crop breeding: current status and perspectives.
    Dalakouras A; Vlachostergios D
    J Exp Bot; 2021 Jul; 72(15):5356-5371. PubMed ID: 34017985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil carbon sequestration impacts on global climate change and food security.
    Lal R
    Science; 2004 Jun; 304(5677):1623-7. PubMed ID: 15192216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accelerating agriculture: Data-intensive plant breeding and the use of genetic gain as an indicator for agricultural research and development.
    Williamson HF; Leonelli S
    Stud Hist Philos Sci; 2022 Oct; 95():167-176. PubMed ID: 36058040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adapting legume crops to climate change using genomic approaches.
    Mousavi-Derazmahalleh M; Bayer PE; Hane JK; Valliyodan B; Nguyen HT; Nelson MN; Erskine W; Varshney RK; Papa R; Edwards D
    Plant Cell Environ; 2019 Jan; 42(1):6-19. PubMed ID: 29603775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Soil compaction and the architectural plasticity of root systems.
    Correa J; Postma JA; Watt M; Wojciechowski T
    J Exp Bot; 2019 Nov; 70(21):6019-6034. PubMed ID: 31504740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture.
    Sun W; Canadell JG; Yu L; Yu L; Zhang W; Smith P; Fischer T; Huang Y
    Glob Chang Biol; 2020 Jun; 26(6):3325-3335. PubMed ID: 31953897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.