These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35526113)

  • 1. Inverse problems in blood flow modeling: A review.
    Nolte D; Bertoglio C
    Int J Numer Method Biomed Eng; 2022 Aug; 38(8):e3613. PubMed ID: 35526113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications.
    Bracamonte JH; Saunders SK; Wilson JS; Truong UT; Soares JS
    Appl Sci (Basel); 2022 Apr; 12(8):. PubMed ID: 36911244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamics of Cerebral Aneurysms: Connecting Medical Imaging and Biomechanical Analysis.
    Rayz VL; Cohen-Gadol AA
    Annu Rev Biomed Eng; 2020 Jun; 22():231-256. PubMed ID: 32212833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Inverse Problem Approach for Parameter Estimation of Cardiovascular System Models.
    Yang X; Leandro JS; Cordeiro TD; Lima AMN
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5642-5645. PubMed ID: 34892402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data.
    de Vecchi A; Gomez A; Pushparajah K; Schaeffter T; Simpson JM; Razavi R; Penney GP; Smith NP; Nordsletten DA
    Comput Med Imaging Graph; 2016 Jul; 51():20-31. PubMed ID: 27108088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Considerations for numerical modeling of the pulmonary circulation--a review with a focus on pulmonary hypertension.
    Kheyfets VO; O'Dell W; Smith T; Reilly JJ; Finol EA
    J Biomech Eng; 2013 Jun; 135(6):61011-15. PubMed ID: 23699723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lagrangian postprocessing of computational hemodynamics.
    Shadden SC; Arzani A
    Ann Biomed Eng; 2015 Jan; 43(1):41-58. PubMed ID: 25059889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study.
    Pekkan K; de Zélicourt D; Ge L; Sotiropoulos F; Frakes D; Fogel MA; Yoganathan AP
    Ann Biomed Eng; 2005 Mar; 33(3):284-300. PubMed ID: 15868719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation.
    Berg P; Saalfeld S; Voß S; Beuing O; Janiga G
    Neurosurg Focus; 2019 Jul; 47(1):E15. PubMed ID: 31261119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating multi-fidelity blood flow data with reduced-order data assimilation.
    Habibi M; D'Souza RM; Dawson STM; Arzani A
    Comput Biol Med; 2021 Aug; 135():104566. PubMed ID: 34157468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reduced computational and geometrical framework for inverse problems in hemodynamics.
    Lassila T; Manzoni A; Quarteroni A; Rozza G
    Int J Numer Method Biomed Eng; 2013 Jul; 29(7):741-76. PubMed ID: 23798318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow volume of uterine arteries in human pregnancies determined using 3D and bi-dimensional imaging, angio-Doppler, and fluid-dynamic modeling.
    Rigano S; Ferrazzi E; Boito S; Pennati G; Padoan A; Galan H
    Placenta; 2010 Jan; 31(1):37-43. PubMed ID: 19945159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional flow patterns in the feto-placental vasculature system of the mouse placenta.
    Shannon AT; Mirbod P
    Microvasc Res; 2017 May; 111():88-95. PubMed ID: 28111314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distributed lumped parameter model of blood flow with fluid-structure interaction.
    Pewowaruk R; Roldán-Alzate A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1659-1674. PubMed ID: 34076757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart blood flow simulation: a perspective review.
    Doost SN; Ghista D; Su B; Zhong L; Morsi YS
    Biomed Eng Online; 2016 Aug; 15(1):101. PubMed ID: 27562639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Patient-Specific Computational Fluid Dynamic Model for Hemodynamic Analysis of Left Ventricle Diastolic Dysfunctions.
    Nguyen VT; Wibowo SN; Leow YA; Nguyen HH; Liang Z; Leo HL
    Cardiovasc Eng Technol; 2015 Dec; 6(4):412-29. PubMed ID: 26577476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in parameter estimation and structure identification of biochemical and genomic systems.
    Chou IC; Voit EO
    Math Biosci; 2009 Jun; 219(2):57-83. PubMed ID: 19327372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non Invasive Blood Flow Features Estimation in Cerebral Arteries from Uncertain Medical Data.
    Lal R; Nicoud F; Bars EL; Deverdun J; Molino F; Costalat V; Mohammadi B
    Ann Biomed Eng; 2017 Nov; 45(11):2574-2591. PubMed ID: 28831614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning a lattice-Boltzmann model for applications in computational hemodynamics.
    Golbert DR; Blanco PJ; Clausse A; Feijóo RA
    Med Eng Phys; 2012 Apr; 34(3):339-49. PubMed ID: 21880536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.