BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35526145)

  • 1. Energy expenditure in COVID-19 mechanically ventilated patients: A comparison of three methods of energy estimation.
    Saseedharan S; Chada RR; Kadam V; Chiluka A; Nagalla B
    JPEN J Parenter Enteral Nutr; 2022 Nov; 46(8):1875-1882. PubMed ID: 35526145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO
    Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH
    Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect calorimetry in critically ill mechanically ventilated patients: Comparison of E-sCOVX with the deltatrac.
    Stapel SN; Weijs PJM; Girbes ARJ; Oudemans-van Straaten HM
    Clin Nutr; 2019 Oct; 38(5):2155-2160. PubMed ID: 30245021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can calculation of energy expenditure based on CO
    Oshima T; Graf S; Heidegger CP; Genton L; Pugin J; Pichard C
    Crit Care; 2017 Jan; 21(1):13. PubMed ID: 28107817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the Beacon and Quark indirect calorimetry devices to measure resting energy expenditure in ventilated ICU patients.
    Slingerland-Boot H; Adhikari S; Mensink MR; van Zanten ARH
    Clin Nutr ESPEN; 2022 Apr; 48():370-377. PubMed ID: 35331516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: proof of concept.
    Stapel SN; de Grooth HJ; Alimohamad H; Elbers PW; Girbes AR; Weijs PJ; Oudemans-van Straaten HM
    Crit Care; 2015 Oct; 19():370. PubMed ID: 26494245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy requirements of long-term ventilated COVID-19 patients with resolved SARS-CoV-2 infection.
    von Renesse J; von Bonin S; Held HC; Schneider R; Seifert AM; Seifert L; Spieth P; Weitz J; Welsch T; Meisterfeld R
    Clin Nutr ESPEN; 2021 Aug; 44():211-217. PubMed ID: 34330468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients.
    Savard JF; Faisy C; Lerolle N; Guerot E; Diehl JL; Fagon JY
    Crit Care Med; 2008 Apr; 36(4):1175-83. PubMed ID: 18379244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Single-Center Prospective Observational Study Comparing Resting Energy Expenditure in Different Phases of Critical Illness: Indirect Calorimetry Versus Predictive Equations.
    Tah PC; Lee ZY; Poh BK; Abdul Majid H; Hakumat-Rai VR; Mat Nor MB; Kee CC; Kamarul Zaman M; Hasan MS
    Crit Care Med; 2020 May; 48(5):e380-e390. PubMed ID: 32168031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are Predictive Energy Expenditure Equations in Ventilated Surgery Patients Accurate?
    Tignanelli CJ; Andrews AG; Sieloff KM; Pleva MR; Reichert HA; Wooley JA; Napolitano LM; Cherry-Bukowiec JR
    J Intensive Care Med; 2019 May; 34(5):426-431. PubMed ID: 28382850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intensive care patients. Determining daily energy expenditure - a comparison of two methods].
    Rokuss K; Kalenka A; Bender HJ; Hinkelbein J
    Anaesthesist; 2009 Aug; 58(8):787-94. PubMed ID: 19669707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External Validation with Accuracy Confounders of VCO
    Briassoulis P; Ilia S; Briassouli E; Briassoulis G
    Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative characteristics of some methods for estimating energy expenditure in critically ill mechanically ventilated patients.
    Nikolova S; Kyosebekirov E; Mitkovski E; Kazakov D; Stoilov V; Pavlov G; Stefanov C
    Folia Med (Plovdiv); 2023 Dec; 65(6):909-914. PubMed ID: 38351779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of carbon dioxide production (VCO
    Kagan I; Zusman O; Bendavid I; Theilla M; Cohen J; Singer P
    Crit Care; 2018 Aug; 22(1):186. PubMed ID: 30075796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-hour indirect calorimetry measurement as a predictor of 24-hour energy expenditure in critically ill surgical patients: A longitudinal study.
    Lichter Y; Sold O; Angel Y; Nizri E; Gerstenhaber F; Gal Oz A; Stavi D; Nini A; Singer P; Goder N
    JPEN J Parenter Enteral Nutr; 2023 Sep; 47(7):896-903. PubMed ID: 37392378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients.
    Smyrnios NA; Curley FJ; Shaker KG
    JPEN J Parenter Enteral Nutr; 1997; 21(3):168-74. PubMed ID: 9168370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy Expenditure in Critically Ill Elderly Patients: Indirect Calorimetry vs Predictive Equations.
    Segadilha NLAL; Rocha EEM; Tanaka LMS; Gomes KLP; Espinoza REA; Peres WAF
    JPEN J Parenter Enteral Nutr; 2017 Jul; 41(5):776-784. PubMed ID: 26826262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 24-hour indirect calorimetry in mechanically ventilated critically ill patients.
    Zijlstra N; ten Dam SM; Hulshof PJ; Ram C; Hiemstra G; de Roos NM
    Nutr Clin Pract; 2007 Apr; 22(2):250-5. PubMed ID: 17374800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A predictive equation for determination of resting energy expenditure in mechanically ventilated patients.
    Sherman MS
    Chest; 1994 Feb; 105(2):544-9. PubMed ID: 8306760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged progressive hypermetabolism during COVID-19 hospitalization undetected by common predictive energy equations.
    Niederer LE; Miller H; Haines KL; Molinger J; Whittle J; MacLeod DB; McClave SA; Wischmeyer PE
    Clin Nutr ESPEN; 2021 Oct; 45():341-350. PubMed ID: 34620338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.