These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35526632)
1. Dissipation of a mix of priority PAHs in soils by using availability enhancers. Effect of aging and pollutant interactions. Madrid F; Florido MC; Rubio-Bellido M; Villaverde J; Morillo E Sci Total Environ; 2022 Sep; 837():155744. PubMed ID: 35526632 [TBL] [Abstract][Full Text] [Related]
2. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956 [TBL] [Abstract][Full Text] [Related]
3. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on Wolf DC; Gan J Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872 [TBL] [Abstract][Full Text] [Related]
4. Effects of corn straw on dissipation of polycyclic aromatic hydrocarbons and potential application of backpropagation artificial neural network prediction model for PAHs bioremediation. Bao H; Wang J; Li J; Zhang H; Wu F Ecotoxicol Environ Saf; 2019 Dec; 186():109745. PubMed ID: 31606644 [TBL] [Abstract][Full Text] [Related]
5. Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Crampon M; Bureau F; Akpa-Vinceslas M; Bodilis J; Machour N; Le Derf F; Portet-Koltalo F Environ Sci Pollut Res Int; 2014; 21(13):8133-45. PubMed ID: 24671402 [TBL] [Abstract][Full Text] [Related]
6. Negative role of biochars in the dissipation and vegetable uptake of polycyclic aromatic hydrocarbons (PAHs) in an agricultural soil: Cautions for application of biochars to remediate PAHs-contaminated soil. Zhang F; Zhang G; Liao X Ecotoxicol Environ Saf; 2021 Apr; 213():112075. PubMed ID: 33636468 [TBL] [Abstract][Full Text] [Related]
7. Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Stokes JD; Wilkinson A; Reid BJ; Jones KC; Semple KT Environ Toxicol Chem; 2005 Jun; 24(6):1325-30. PubMed ID: 16117107 [TBL] [Abstract][Full Text] [Related]
8. Distribution, toxicity, and origins of polycyclic aromatic hydrocarbons in soils in Ulsan, South Korea. Jeon HD; Oh SY Environ Monit Assess; 2019 Jun; 191(7):409. PubMed ID: 31165273 [TBL] [Abstract][Full Text] [Related]
9. Natural attenuation of fluorene and pyrene in contaminated soils and assisted with hydroxypropyl-β-cyclodextrin. Effect of co-contamination. Madrid F; Rubio-Bellido M; Villaverde J; Tejada M; Morillo E Sci Total Environ; 2016 Nov; 571():42-9. PubMed ID: 27454573 [TBL] [Abstract][Full Text] [Related]
10. Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase. Zeng J; Li Y; Dai Y; Wu Y; Lin X Environ Pollut; 2021 Oct; 287():117581. PubMed ID: 34166999 [TBL] [Abstract][Full Text] [Related]
11. Rhamnolipid-enhanced solubilization and biodegradation of PAHs in soils after conventional bioremediation. Posada-Baquero R; Grifoll M; Ortega-Calvo JJ Sci Total Environ; 2019 Jun; 668():790-796. PubMed ID: 30870747 [TBL] [Abstract][Full Text] [Related]
12. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils. Wolf DC; Cryder Z; Gan J Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356 [TBL] [Abstract][Full Text] [Related]
13. Two-liquid-phase system: A promising technique for predicting bioavailability of polycyclic aromatic hydrocarbons in long-term contaminated soils. Wang C; Wang Z; Li Z; Ahmad R Chemosphere; 2017 Feb; 169():685-692. PubMed ID: 27914353 [TBL] [Abstract][Full Text] [Related]
14. The prediction of PAHs bioavailability in soils using chemical methods: state of the art and future challenges. Cachada A; Pereira R; da Silva EF; Duarte AC Sci Total Environ; 2014 Feb; 472():463-80. PubMed ID: 24300458 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of fatty acid derivatives in the remediation of aged PAH-contaminated soil and microbial community and degradation gene response. Wang Q; Hou J; Yuan J; Wu Y; Liu W; Luo Y; Christie P Chemosphere; 2020 Jun; 248():125983. PubMed ID: 32004887 [TBL] [Abstract][Full Text] [Related]
17. The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants. Du J; Liu J; Jia T; Chai B Environ Pollut; 2022 Apr; 298():118823. PubMed ID: 35007680 [TBL] [Abstract][Full Text] [Related]
18. Extraction of PAHS from an aged creosote-polluted soil by cyclodextrins and rhamnolipids. Side effects on removal and availability of potentially toxic elements. Madrid F; Ballesteros R; Lacorte S; Villaverde J; Morillo E Sci Total Environ; 2019 Feb; 653():384-392. PubMed ID: 30412883 [TBL] [Abstract][Full Text] [Related]
19. Alternative techniques to HPCD to evaluate the bioaccessible fraction of soil-associated PAHs and correlation to biodegradation efficiency. Crampon M; Bodilis J; Le Derf F; Portet-Koltalo F J Hazard Mater; 2016 Aug; 314():220-229. PubMed ID: 27136727 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen addition enhanced the polycyclic aromatic hydrocarbons dissipation through increasing the abundance of related degrading genes in the soils. Wang J; Yang Z; Zhou X; Waigi MG; Gudda FO; Odinga ES; Mosa A; Ling W J Hazard Mater; 2022 Aug; 435():129034. PubMed ID: 35525013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]