These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35526632)
21. Variation in soil aggregate-size distribution affects the dissipation of polycyclic aromatic hydrocarbons in long-term field-contaminated soils. Wei R; Ni J; Chen W; Yang Y Environ Sci Pollut Res Int; 2017 Oct; 24(28):22332-22339. PubMed ID: 28801893 [TBL] [Abstract][Full Text] [Related]
22. Soil bacterial diversity and functionality are driven by plant species for enhancing polycyclic aromatic hydrocarbons dissipation in soils. Wang X; Teng Y; Ren W; Han Y; Wang X; Li X Sci Total Environ; 2021 Nov; 797():149204. PubMed ID: 34346367 [TBL] [Abstract][Full Text] [Related]
23. Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in the soils of vegetable greenhouses in Shandong, China. Chai C; Cheng Q; Wu J; Zeng L; Chen Q; Zhu X; Ma D; Ge W Ecotoxicol Environ Saf; 2017 Aug; 142():181-188. PubMed ID: 28411513 [TBL] [Abstract][Full Text] [Related]
24. Enhanced Bioremediation of Aged Polycyclic Aromatic Hydrocarbons in Soil Using Immobilized Microbial Consortia Combined with Strengthening Remediation Strategies. Zhou H; Gao X; Wang S; Zhang Y; Coulon F; Cai C Int J Environ Res Public Health; 2023 Jan; 20(3):. PubMed ID: 36767132 [TBL] [Abstract][Full Text] [Related]
25. Role of keystone drives polycyclic aromatic hydrocarbons degradation and humification especially combined with aged contaminated soil in co-composting. Huang J; Jiang Z; Li A; Jiang F; Tang P; Cui J; Feng W; Fu C; Lu Q J Environ Manage; 2024 Mar; 354():120323. PubMed ID: 38417356 [TBL] [Abstract][Full Text] [Related]
26. Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process. Gong X; Xu X; Gong Z; Li X; Jia C; Guo M; Li H Environ Sci Pollut Res Int; 2015 Aug; 22(16):12001-10. PubMed ID: 25874432 [TBL] [Abstract][Full Text] [Related]
27. [Characters of soil-vegetable transfer and accumulation of polycyclic aromatic hydrocarbons]. Yin CQ; Jiang X; Yang XL; Wang CY; Bian YR; Wang F Huan Jing Ke Xue; 2008 Nov; 29(11):3240-5. PubMed ID: 19186834 [TBL] [Abstract][Full Text] [Related]
29. Extraction of nonylphenol, pyrene and phenanthrene from sewage sludge and composted biosolids by cyclodextrins and rhamnolipids. Madrid F; Rubio-Bellido M; Morillo E Sci Total Environ; 2020 May; 715():136986. PubMed ID: 32023519 [TBL] [Abstract][Full Text] [Related]
30. Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Sigmund G; Poyntner C; Piñar G; Kah M; Hofmann T J Hazard Mater; 2018 Mar; 345():107-113. PubMed ID: 29136576 [TBL] [Abstract][Full Text] [Related]
31. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. Valizadeh S; Lee SS; Choi YJ; Baek K; Jeon BH; Andrew Lin KY; Park YK Environ Res; 2022 Oct; 213():113599. PubMed ID: 35679906 [TBL] [Abstract][Full Text] [Related]
32. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils. Wu G; Kechavarzi C; Li X; Sui H; Pollard SJ; Coulon F Chemosphere; 2013 Feb; 90(8):2240-6. PubMed ID: 23141842 [TBL] [Abstract][Full Text] [Related]
33. Removal of polycyclic aromatic hydrocarbons from soil: a comparison between bioremoval and supercritical fluids extraction. Amezcua-Allieri MA; Ávila-Chávez MA; Trejo A; Meléndez-Estrada J Chemosphere; 2012 Mar; 86(10):985-93. PubMed ID: 22197016 [TBL] [Abstract][Full Text] [Related]
34. Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Papadopoulos A; Paton GI; Reid BJ; Semple KT J Environ Monit; 2007 Jun; 9(6):516-22. PubMed ID: 17554422 [TBL] [Abstract][Full Text] [Related]
36. Mixed-surfactant-enhanced phytoremediation of PAHs in soil: Bioavailability of PAHs and responses of microbial community structure. Lu H; Wang W; Li F; Zhu L Sci Total Environ; 2019 Feb; 653():658-666. PubMed ID: 30759591 [TBL] [Abstract][Full Text] [Related]
37. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil. Anyanwu IN; Ikpikpini OC; Semple KT Ecotoxicol Environ Saf; 2018 Jan; 147():594-601. PubMed ID: 28923724 [TBL] [Abstract][Full Text] [Related]
38. Rhizosphere-enhanced biosurfactant action on slowly desorbing PAHs in contaminated soil. Posada-Baquero R; Jiménez-Volkerink SN; García JL; Vila J; Cantos M; Grifoll M; Ortega-Calvo JJ Sci Total Environ; 2020 Jun; 720():137608. PubMed ID: 32143055 [TBL] [Abstract][Full Text] [Related]
39. Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Doick KJ; Dew NM; Semple KT Environ Sci Technol; 2005 Nov; 39(22):8858-64. PubMed ID: 16323787 [TBL] [Abstract][Full Text] [Related]