These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 35526663)

  • 1. The dynamic, motile and deformative properties of RNA nanoparticles facilitate the third milestone of drug development.
    Li X; Bhullar AS; Binzel DW; Guo P
    Adv Drug Deliv Rev; 2022 Jul; 186():114316. PubMed ID: 35526663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA four-way junction (4WJ) for spontaneous cancer-targeting, effective tumor-regression, metastasis suppression, fast renal excretion and undetectable toxicity.
    Li X; Jin K; Cheng TC; Liao YC; Lee WJ; Bhullar AS; Chen LC; Rychahou P; Phelps MA; Ho YS; Guo P
    Biomaterials; 2024 Mar; 305():122432. PubMed ID: 38176263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable RNA nanoparticles as potential new generation drugs for cancer therapy.
    Shu Y; Pi F; Sharma A; Rajabi M; Haque F; Shu D; Leggas M; Evers BM; Guo P
    Adv Drug Deliv Rev; 2014 Feb; 66():74-89. PubMed ID: 24270010
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Jin K; Liao YC; Cheng TC; Li X; Lee WJ; Pi F; Jasinski D; Chen LC; Phelps MA; Ho YS; Guo P
    Mol Pharm; 2024 Feb; 21(2):718-728. PubMed ID: 38214504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the size, shape and structure of RNA nanoparticles for favorable cancer targeting and immunostimulation.
    Guo S; Xu C; Yin H; Hill J; Pi F; Guo P
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jan; 12(1):e1582. PubMed ID: 31456362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiolabeled RNA Nanoparticles for Highly Specific Targeting and Efficient Tumor Accumulation with Favorable
    Wang H; Guo P
    Mol Pharm; 2021 Aug; 18(8):2924-2934. PubMed ID: 34212728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity.
    Binzel DW; Li X; Burns N; Khan E; Lee WJ; Chen LC; Ellipilli S; Miles W; Ho YS; Guo P
    Chem Rev; 2021 Jul; 121(13):7398-7467. PubMed ID: 34038115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Nanoparticles as Rubber for Compelling Vessel Extravasation to Enhance Tumor Targeting and for Fast Renal Excretion to Reduce Toxicity.
    Ghimire C; Wang H; Li H; Vieweger M; Xu C; Guo P
    ACS Nano; 2020 Oct; 14(10):13180-13191. PubMed ID: 32902260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic Delivery of Anti-miRNA for Suppression of Triple Negative Breast Cancer Utilizing RNA Nanotechnology.
    Shu D; Li H; Shu Y; Xiong G; Carson WE; Haque F; Xu R; Guo P
    ACS Nano; 2015 Oct; 9(10):9731-40. PubMed ID: 26387848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivalent rubber-like RNA nanoparticles for targeted co-delivery of paclitaxel and MiRNA to silence the drug efflux transporter and liver cancer drug resistance.
    Wang H; Ellipilli S; Lee WJ; Li X; Vieweger M; Ho YS; Guo P
    J Control Release; 2021 Feb; 330():173-184. PubMed ID: 33316298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy.
    Xu C; Haque F; Jasinski DL; Binzel DW; Shu D; Guo P
    Cancer Lett; 2018 Feb; 414():57-70. PubMed ID: 28987384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Production of RNA Nanoparticles via Automated Processing and Self-Assembly.
    Jasinski DL; Binzel DW; Guo P
    ACS Nano; 2019 Apr; 13(4):4603-4612. PubMed ID: 30888787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.
    Yang Y; Zhang M; Song H; Yu C
    Acc Chem Res; 2020 Aug; 53(8):1545-1556. PubMed ID: 32667182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells.
    Shu Y; Cinier M; Shu D; Guo P
    Methods; 2011 Jun; 54(2):204-14. PubMed ID: 21320601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational nanocarrier design towards clinical translation of cancer nanotherapy.
    Guo D; Ji X; Luo J
    Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33540386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers.
    Lu L; Kang S; Sun C; Sun C; Guo Z; Li J; Zhang T; Luo X; Liu B
    Curr Top Med Chem; 2020; 20(27):2427-2441. PubMed ID: 32842941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles.
    Jasinski DL; Yin H; Li Z; Guo P
    Hum Gene Ther; 2018 Jan; 29(1):77-86. PubMed ID: 28557574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent update of toxicity aspects of nanoparticulate systems for drug delivery.
    Patnaik S; Gorain B; Padhi S; Choudhury H; Gabr GA; Md S; Kumar Mishra D; Kesharwani P
    Eur J Pharm Biopharm; 2021 Apr; 161():100-119. PubMed ID: 33639254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.