These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35526712)

  • 1. Carbohydrate-to-protein ratio regulates hydrolysis and acidogenesis processes during volatile fatty acids production.
    Wang L; Hao J; Wang C; Li Y; Yang Q
    Bioresour Technol; 2022 Jul; 355():127266. PubMed ID: 35526712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load.
    Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J
    J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation.
    Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q
    Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH.
    Feng L; Chen Y; Zheng X
    Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives.
    Xin X; He J; Li L; Qiu W
    Bioresour Technol; 2018 Feb; 250():69-78. PubMed ID: 29153652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation.
    García-Depraect O; Lebrero R; Rodriguez-Vega S; Börner RA; Börner T; Muñoz R
    Bioresour Technol; 2022 Sep; 360():127655. PubMed ID: 35870672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge.
    Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G
    Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system.
    Pan XR; Li WW; Huang L; Liu HQ; Wang YK; Geng YK; Kwan-Sing Lam P; Yu HQ
    Bioresour Technol; 2018 Jul; 260():61-67. PubMed ID: 29614452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesophilic, thermophilic and hyperthermophilic acidogenic fermentation of food waste in batch: Effect of inoculum source.
    Arras W; Hussain A; Hausler R; Guiot SR
    Waste Manag; 2019 Mar; 87():279-287. PubMed ID: 31109527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation.
    Luo J; Li Y; Li H; Li Y; Lin L; Li Y; Huang W; Cao J; Wu Y
    Bioresour Technol; 2022 Jan; 344(Pt B):126318. PubMed ID: 34775055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agroindustrial waste as a resource for volatile fatty acids production via anaerobic fermentation.
    Greses S; Tomás-Pejó E; Gónzalez-Fernández C
    Bioresour Technol; 2020 Feb; 297():122486. PubMed ID: 31796382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical modeling of dark fermentation of macroalgae for hydrogen and volatile fatty acids production.
    Kim B; Jeong J; Kim J; Hee Yoon H; Khanh Thinh Nguyen P; Kim J
    Bioresour Technol; 2022 Jun; 354():127193. PubMed ID: 35452825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of pretreated waste activated sludge to organic acids and biopolymer.
    Muhorakeye A; Cayetano RD; Kumar AN; Park J; Pandey AK; Kim SH
    Chemosphere; 2022 Sep; 303(Pt 2):135078. PubMed ID: 35644235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy.
    Zhao L; Zhang J; Xu Z; Cai S; Chen L; Cai T; Ji XM
    Bioresour Technol; 2022 Nov; 363():127939. PubMed ID: 36100183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bisphenol A alters volatile fatty acids accumulation during sludge anaerobic fermentation by affecting amino acid metabolism, material transport and carbohydrate-active enzymes.
    Jiang X; Yan Y; Feng L; Wang F; Guo Y; Zhang X; Zhang Z
    Bioresour Technol; 2021 Mar; 323():124588. PubMed ID: 33383358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis and acidification of waste activated sludge at different pHs.
    Chen Y; Jiang S; Yuan H; Zhou Q; Gu G
    Water Res; 2007 Feb; 41(3):683-9. PubMed ID: 16987541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge.
    Kumi PJ; Henley A; Shana A; Wilson V; Esteves SR
    Water Res; 2016 Sep; 100():267-276. PubMed ID: 27206055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of sulfadiazine on anaerobic fermentation of waste activated sludge for volatile fatty acids production: Focusing on microbial responses.
    Xie J; Duan X; Feng L; Yan Y; Wang F; Dong H; Jia R; Zhou Q
    Chemosphere; 2019 Mar; 219():305-312. PubMed ID: 30543966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydraulic loading rate on acidogenesis in a membrane-coupled anaerobic VFAs fermenter.
    Kim JO; Somiya I
    Environ Technol; 2001 Jan; 22(1):91-9. PubMed ID: 11286061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.