These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3552725)

  • 1. Fatty acid synthesis in mitochondria from Saccharomyces cerevisiae.
    Bessoule JJ; Lessire R; Rigoulet M; Guerin B; Cassagne C
    FEBS Lett; 1987 Apr; 214(1):158-62. PubMed ID: 3552725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid synthesis in mitochondria of Euglena gracilis.
    Inui H; Miyatake K; Nakano Y; Kitaoka S
    Eur J Biochem; 1984 Jul; 142(1):121-6. PubMed ID: 6146525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of the very long-chain fatty acid elongase ELOVL7.
    Naganuma T; Sato Y; Sassa T; Ohno Y; Kihara A
    FEBS Lett; 2011 Oct; 585(20):3337-41. PubMed ID: 21959040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites.
    Lian J; Zhao H
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):437-51. PubMed ID: 25306882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid elongation in yeast--biochemical characteristics of the enzyme system and isolation of elongation-defective mutants.
    Dittrich F; Zajonc D; Hühne K; Hoja U; Ekici A; Greiner E; Klein H; Hofmann J; Bessoule JJ; Sperling P; Schweizer E
    Eur J Biochem; 1998 Mar; 252(3):477-85. PubMed ID: 9546663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid chain elongation by microsomal enzymes from the bovine meibomian gland.
    Anderson GJ; Kolattukudy PE
    Arch Biochem Biophys; 1985 Feb; 237(1):177-85. PubMed ID: 3918501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biosynthesis of fatty acids in mouse brain mitochondria in the presence of malonyl-CoA or acetyl-CoA].
    Paturneau-Jouas M; Baumann N; Bourre JM
    Biochimie; 1976; 58(3):341-9. PubMed ID: 6069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional differentiation and selective inactivation of multiple Saccharomyces cerevisiae genes involved in very-long-chain fatty acid synthesis.
    Rössler H; Rieck C; Delong T; Hoja U; Schweizer E
    Mol Genet Genomics; 2003 May; 269(2):290-8. PubMed ID: 12684876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae.
    Kohlwein SD; Eder S; Oh CS; Martin CE; Gable K; Bacikova D; Dunn T
    Mol Cell Biol; 2001 Jan; 21(1):109-25. PubMed ID: 11113186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae.
    Tang X; Feng H; Chen WN
    Metab Eng; 2013 Mar; 16():95-102. PubMed ID: 23353549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis.
    Cui W; Liang Y; Tian W; Ji M; Ma X
    Biochim Biophys Acta; 2016 Mar; 1861(3):149-55. PubMed ID: 26680361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.).
    Domergue F; Chevalier S; Santarelli X; Cassagne C; Lessire R
    Eur J Biochem; 1999 Jul; 263(2):464-70. PubMed ID: 10406955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases.
    Blacklock BJ; Jaworski JG
    Biochem Biophys Res Commun; 2006 Jul; 346(2):583-90. PubMed ID: 16765910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola.
    Yilmaz JL; Lim ZL; Beganovic M; Breazeale S; Andre C; Stymne S; Vrinten P; Senger T
    Lipids; 2017 Mar; 52(3):207-222. PubMed ID: 28197856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae.
    Chen Y; Bao J; Kim IK; Siewers V; Nielsen J
    Metab Eng; 2014 Mar; 22():104-9. PubMed ID: 24502850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some characteristics of soluble fatty acid synthesis in germinating pea seeds.
    Bolton P; Harwood JL
    Biochim Biophys Acta; 1977 Oct; 489(1):15-24. PubMed ID: 20971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acid import into mitochondria.
    Kerner J; Hoppel C
    Biochim Biophys Acta; 2000 Jun; 1486(1):1-17. PubMed ID: 10856709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of the synthesis of very-long-chain fatty acid in mitochondria from Saccharomyces cerevisiae.
    Bessoule JJ; Lessire R; Rigoulet M; Guerin B; Cassagne C
    Eur J Biochem; 1988 Oct; 177(1):207-11. PubMed ID: 3053171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of fatty acid synthesis and malonyl-CoA content in mouse brown adipose tissue in response to cold-exposure, starvation or re-feeding.
    Buckley MG; Rath EA
    Biochem J; 1987 Apr; 243(2):437-42. PubMed ID: 2888457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs.
    Schmidt I; Herpin P
    J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.