These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 3552732)

  • 1. On the role of the light-harvesting B880 in the correct insertion of the reaction center of Rhodobacter capsulatus and Rhodobacter sphaeroides.
    Jackson WJ; Kiley PJ; Haith CE; Kaplan S; Prince RC
    FEBS Lett; 1987 May; 215(1):171-4. PubMed ID: 3552732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex.
    Crouch LI; Jones MR
    Biochim Biophys Acta; 2012 Feb; 1817(2):336-52. PubMed ID: 22079525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytochrome bc1 complex of Rhodobacter sphaeroides can restore cytochrome c2-independent photosynthetic growth to a Rhodobacter capsulatus mutant lacking cytochrome bc1.
    Davidson E; Prince RC; Haith CE; Daldal F
    J Bacteriol; 1989 Nov; 171(11):6059-68. PubMed ID: 2553670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of functional inter-species hybrid photosynthetic complexes in Rhodobacter capsulatus.
    Zilsel J; Lilburn TG; Beatty JT
    FEBS Lett; 1989 Aug; 253(1-2):247-52. PubMed ID: 2668034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of wild type and genetically modified reaction centers from Rhodobacter capsulatus: structural comparison with Rhodopseudomonas viridis and Rhodobacter sphaeroides.
    Baciou L; Bylina EJ; Sebban P
    Biophys J; 1993 Aug; 65(2):652-60. PubMed ID: 8218894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis.
    Utschig LM; Poluektov O; Schlesselman SL; Thurnauer MC; Tiede DM
    Biochemistry; 2001 May; 40(20):6132-41. PubMed ID: 11352751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rhodobacter sphaeroides PufX protein is not required for photosynthetic competence in the absence of a light harvesting system.
    McGlynn P; Hunter CN; Jones MR
    FEBS Lett; 1994 Aug; 349(3):349-53. PubMed ID: 8050595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The membrane-bound cytochrome cy of Rhodobacter capsulatus can serve as an electron donor to the photosynthetic reaction of Rhodobacter sphaeroides.
    Jenney FE; Prince RC; Daldal F
    Biochim Biophys Acta; 1996 Feb; 1273(2):159-64. PubMed ID: 8611589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides.
    Strakhovskaya MG; Lukashev EP; Korvatovskiy BN; Kholina EG; Seifullina NK; Knox PP; Paschenko VZ
    Photosynth Res; 2021 Feb; 147(2):197-209. PubMed ID: 33389445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic apparatus of purple bacteria.
    Hu X; Ritz T; Damjanović A; Autenrieth F; Schulten K
    Q Rev Biophys; 2002 Feb; 35(1):1-62. PubMed ID: 11997980
    [No Abstract]   [Full Text] [Related]  

  • 12. Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: the symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26.
    Norris JR; Budil DE; Gast P; Chang CH; el-Kabbani O; Schiffer M
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4335-9. PubMed ID: 2543969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential protein insertion into developing photosynthetic membrane regions of Rhodopseudomonas sphaeroides.
    Inamine GS; Reilly PA; Niederman RA
    J Cell Biochem; 1984; 24(1):69-77. PubMed ID: 6609927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the alpha-polypeptide of the core light-harvesting complex.
    Recchia PA; Davis CM; Lilburn TG; Beatty JT; Parkes-Loach PS; Hunter CN; Loach PA
    Biochemistry; 1998 Aug; 37(31):11055-63. PubMed ID: 9693001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence and transcriptional analysis of the flanking region of the gene (spb) for the trans-acting factor that controls light-mediated expression of the puf operon in Rhodobacter sphaeroides.
    Mizoguchi H; Masuda T; Nishimura K; Shimada H; Ohta H; Shioi Y; Takamiya K
    Plant Cell Physiol; 1997 May; 38(5):558-67. PubMed ID: 9210332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The photosynthetic apparatus of Rhodobacter sphaeroides.
    Verméglio A; Joliot P
    Trends Microbiol; 1999 Nov; 7(11):435-40. PubMed ID: 10542422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the core region of the PufX protein in inhibition of reconstitution of the core light-harvesting complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus.
    Parkes-Loach PS; Law CJ; Recchia PA; Kehoe J; Nehrlich S; Chen J; Loach PA
    Biochemistry; 2001 May; 40(19):5593-601. PubMed ID: 11341824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center.
    Meinhardt SW; Kiley PJ; Kaplan S; Crofts AR; Harayama S
    Arch Biochem Biophys; 1985 Jan; 236(1):130-9. PubMed ID: 3881081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous Production of the Photosynthetic Reaction Center and Light Harvesting 1 Complexes of the Thermophile Thermochromatium tepidum in the Mesophile Rhodobacter sphaeroides and Thermal Stability of a Hybrid Core Complex.
    Jun D; Huang V; Beatty JT
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28821545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.