These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35527345)

  • 1. High-Aspect-Ratio Nanoelectrodes Enable Long-Term Recordings of Neuronal Signals with Subthreshold Resolution.
    Shokoohimehr P; Cepkenovic B; Milos F; Bednár J; Hassani H; Maybeck V; Offenhäusser A
    Small; 2022 Jun; 18(22):e2200053. PubMed ID: 35527345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration.
    Jäckel D; Bakkum DJ; Russell TL; Müller J; Radivojevic M; Frey U; Franke F; Hierlemann A
    Sci Rep; 2017 Apr; 7(1):978. PubMed ID: 28428560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D neuronal network read-out interface with high recording performance using a neuronal cluster patterning on a microelectrode array.
    Yoon D; Nam Y
    Biosens Bioelectron; 2024 Oct; 261():116507. PubMed ID: 38905857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes.
    Dipalo M; Amin H; Lovato L; Moia F; Caprettini V; Messina GC; Tantussi F; Berdondini L; De Angelis F
    Nano Lett; 2017 Jun; 17(6):3932-3939. PubMed ID: 28534411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings.
    Abu Shihada J; Jung M; Decke S; Koschinski L; Musall S; Rincón Montes V; Offenhäusser A
    Adv Sci (Weinh); 2024 Apr; 11(13):e2305944. PubMed ID: 38240370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs).
    Angle MR; Schaefer AT
    PLoS One; 2012; 7(8):e43194. PubMed ID: 22905231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multimodal Fitting Approach to Construct Single-Neuron Models With Patch Clamp and High-Density Microelectrode Arrays.
    Buccino AP; Damart T; Bartram J; Mandge D; Xue X; Zbili M; Gänswein T; Jaquier A; Emmenegger V; Markram H; Hierlemann A; Van Geit W
    Neural Comput; 2024 Jun; 36(7):1286-1331. PubMed ID: 38776965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-electrode array technologies for neuroscience and cardiology.
    Spira ME; Hai A
    Nat Nanotechnol; 2013 Feb; 8(2):83-94. PubMed ID: 23380931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities and dilemmas of
    Wu Y; Chen H; Guo L
    RSC Adv; 2019 Dec; 10(1):187-200. PubMed ID: 35492533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-density MEA recordings unveil the dynamics of bursting events in Cell Cultures.
    Lonardoni D; Di Marco S; Amin H; Maccione A; Berdondini L; Nieus T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3763-6. PubMed ID: 26737112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell.
    Zecević D; Antić S
    Histochem J; 1998 Mar; 30(3):197-216. PubMed ID: 10188927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.
    Lopes CDF; Mateus JC; Aguiar P
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays: contact structures for neuron-to-electrode signal transmission (NEST).
    Bieberich E; Anthony GE
    Biosens Bioelectron; 2004 Mar; 19(8):923-31. PubMed ID: 15128112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-cell recordings by extracellular microelectrodes.
    Hai A; Shappir J; Spira ME
    Nat Methods; 2010 Mar; 7(3):200-2. PubMed ID: 20118930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term
    Jang JW; Kang YN; Seo HW; Kim B; Choe HK; Park SH; Lee MG; Kim S
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795067
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.