BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 35527504)

  • 1. Salt-mediated, plasmonic field-field/field-lattice coupling-enhanced NIR-II photodynamic therapy using core-gap-shell gold nanopeanuts.
    Kuthala N; Shanmugam M; Kong X; Chiang CS; Hwang KC
    Nanoscale Horiz; 2022 May; 7(6):589-606. PubMed ID: 35527504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides.
    Li R; Hu Y; Sun X; Zhang Z; Chen K; Liu Q; Chen X
    Talanta; 2024 Jun; 273():125899. PubMed ID: 38484502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy.
    Yang Y; Hu Y; Du H; Ren L; Wang H
    Int J Nanomedicine; 2018; 13():2065-2078. PubMed ID: 29670350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap.
    Oh JW; Lim DK; Kim GH; Suh YD; Nam JM
    J Am Chem Soc; 2014 Oct; 136(40):14052-9. PubMed ID: 25198151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photoconversion performance of NdVO
    Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J
    Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap.
    Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118343. PubMed ID: 32302959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Selective Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II Light-Driven O
    Liu S; Chai J; Sun S; Zhang L; Yang J; Fu X; Hai J; Jing YH; Wang B
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46451-46463. PubMed ID: 34570459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Responsive Au@Pd bimetallic core-shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window.
    Tang Z; Ali I; Hou Y; Akakuru OU; Zhang Q; Mushtaq A; Zhang H; Lu Y; Ma X; Ge J; Iqbal MZ; Kong X
    J Mater Chem B; 2022 Aug; 10(34):6532-6545. PubMed ID: 36000458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for
    Shan B; Wang H; Li L; Zhou G; Wen Y; Chen M; Li M
    Theranostics; 2020; 10(25):11656-11672. PubMed ID: 33052239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications.
    Yang W; Lim DK
    Adv Mater; 2020 Dec; 32(51):e2002219. PubMed ID: 33063429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.
    Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D
    Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles.
    Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM
    Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications.
    Singh P; König TAF; Jaiswal A
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monodisperse Dual Plasmonic Au@Cu
    Zhu H; Wang Y; Chen C; Ma M; Zeng J; Li S; Xia Y; Gao M
    ACS Nano; 2017 Aug; 11(8):8273-8281. PubMed ID: 28742316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric Core-Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA.
    Zhu R; Feng H; Li Q; Su L; Fu Q; Li J; Song J; Yang H
    Angew Chem Int Ed Engl; 2021 May; 60(22):12560-12568. PubMed ID: 33769682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps.
    Bock S; Choi YS; Kim M; Yun Y; Pham XH; Kim J; Seong B; Kim W; Jo A; Ham KM; Lee SG; Lee SH; Kang H; Choi HS; Jeong DH; Chang H; Kim DE; Jun BH
    J Nanobiotechnology; 2022 Mar; 20(1):130. PubMed ID: 35279134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.