These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement. Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484 [TBL] [Abstract][Full Text] [Related]
3. Intra-nanoparticle plasmonic nanogap based spatial-confinement SERS analysis of polypeptides. Li R; Hu Y; Sun X; Zhang Z; Chen K; Liu Q; Chen X Talanta; 2024 Jun; 273():125899. PubMed ID: 38484502 [TBL] [Abstract][Full Text] [Related]
4. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Yang Y; Hu Y; Du H; Ren L; Wang H Int J Nanomedicine; 2018; 13():2065-2078. PubMed ID: 29670350 [TBL] [Abstract][Full Text] [Related]
5. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Jin Y Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824 [TBL] [Abstract][Full Text] [Related]
6. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS. Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755 [TBL] [Abstract][Full Text] [Related]
7. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. Oh JW; Lim DK; Kim GH; Suh YD; Nam JM J Am Chem Soc; 2014 Oct; 136(40):14052-9. PubMed ID: 25198151 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in the Synthesis of Intra-Nanogap Au Plasmonic Nanostructures for Bioanalytical Applications. Yang W; Lim DK Adv Mater; 2020 Dec; 32(51):e2002219. PubMed ID: 33063429 [TBL] [Abstract][Full Text] [Related]
9. Enhanced photoconversion performance of NdVO Chang M; Wang M; Shu M; Zhao Y; Ding B; Huang S; Hou Z; Han G; Lin J Acta Biomater; 2019 Nov; 99():295-306. PubMed ID: 31437636 [TBL] [Abstract][Full Text] [Related]
10. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap. Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118343. PubMed ID: 32302959 [TBL] [Abstract][Full Text] [Related]
11. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
12. Site-Selective Photosynthesis of Ag-AgCl@Au Nanomushrooms for NIR-II Light-Driven O Liu S; Chai J; Sun S; Zhang L; Yang J; Fu X; Hai J; Jing YH; Wang B ACS Appl Mater Interfaces; 2021 Oct; 13(39):46451-46463. PubMed ID: 34570459 [TBL] [Abstract][Full Text] [Related]
13. pH-Responsive Au@Pd bimetallic core-shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window. Tang Z; Ali I; Hou Y; Akakuru OU; Zhang Q; Mushtaq A; Zhang H; Lu Y; Ma X; Ge J; Iqbal MZ; Kong X J Mater Chem B; 2022 Aug; 10(34):6532-6545. PubMed ID: 36000458 [TBL] [Abstract][Full Text] [Related]
14. Rationally designed dual-plasmonic gold nanorod@cuprous selenide hybrid heterostructures by regioselective overgrowth for Shan B; Wang H; Li L; Zhou G; Wen Y; Chen M; Li M Theranostics; 2020; 10(25):11656-11672. PubMed ID: 33052239 [TBL] [Abstract][Full Text] [Related]
15. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging. Hu C; Shen J; Yan J; Zhong J; Qin W; Liu R; Aldalbahi A; Zuo X; Song S; Fan C; He D Nanoscale; 2016 Jan; 8(4):2090-6. PubMed ID: 26701141 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles. Lee JH; Oh JW; Nam SH; Cha YS; Kim GH; Rhim WK; Kim NH; Kim J; Han SW; Suh YD; Nam JM Small; 2016 Sep; 12(34):4726-34. PubMed ID: 27028989 [TBL] [Abstract][Full Text] [Related]
17. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications. Singh P; König TAF; Jaiswal A ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737 [TBL] [Abstract][Full Text] [Related]
18. Monodisperse Dual Plasmonic Au@Cu Zhu H; Wang Y; Chen C; Ma M; Zeng J; Li S; Xia Y; Gao M ACS Nano; 2017 Aug; 11(8):8273-8281. PubMed ID: 28742316 [TBL] [Abstract][Full Text] [Related]
19. Asymmetric Core-Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Zhu R; Feng H; Li Q; Su L; Fu Q; Li J; Song J; Yang H Angew Chem Int Ed Engl; 2021 May; 60(22):12560-12568. PubMed ID: 33769682 [TBL] [Abstract][Full Text] [Related]
20. Formation of oligonucleotide-gated silica shell-coated Fe₃O₄-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. Li WP; Liao PY; Su CH; Yeh CS J Am Chem Soc; 2014 Jul; 136(28):10062-75. PubMed ID: 24953310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]